
HBase Schema Design

HBase Schema Design
How I Learned To Stop

Worrying And Love
Denormalization

What Is Schema Design?

Who am I?
Ian Varley

Software engineer at Salesforce.com
@thefutureian

https://twitter.com/#!/thefutureian

What Is Schema Design?
Logical Data Modeling

What Is Schema Design?
Logical Data Modeling

+
Physical Implementation

You always start with a logical model.
Even if it's just an implicit one.

That's totally fine. (If you're right.)

There are lots of ways to model data.
The most common one is:

Entity / Attribute / Relationship

(This is probably what you know
of as just "data modeling".)

There's a well established visual
language for data modeling.

Entities are boxes.
With rounded corners if you're fancy.

Attributes are listed vertically in the box.
Optionally with data types, for clarity.

Relationships are connecting lines.
Optionally with special endpoints, and/or verbs

Example: Concerts

Example: Concerts

Example: Concerts

A note about diagrams: they're useful
for communicating, but can be more
trouble than they're worth. Don't do

them out of obligation; only do them to
understand your problem better.

Example: Concerts

Entity

Attribute

Relationship

For relational databases, you usually
start with this normalized model,

then plug & chug.

Entities → Tables
Attributes → Columns

 Relationships → Foreign Keys
 Many-to-many → Junction tables

 Natural keys → Artificial IDs

For relational databases, you usually
start with this normalized model,

then plug & chug.

So, what's missing?

So, what's missing?
If your data is not massive,

NOTHING.
You should use a relational database. They rock*

So, what's missing?
If your data is not massive,

NOTHING.
You should use a relational database. They rock*

* - This statement has not been approved by the HBase product management committee, and neglects known
deficiencies with the relational model such as poor modeling of hierarchies and graphs, overly rigid attribute structure
enforcement, neglect of the time dimension, and physical optimization concerns leaking into the conceptual
abstraction.

Relational DBs work well because they
are close to the pure logical model.

That model is less likely to change as your
business needs change. You may want to ask
different questions over time, but if you got the
logical model correct, you'll have the answers.

Ah, but what if you do have massive
data? Then what's missing?

Problem: The relational model
doesn't acknowledge scale.

Problem: The relational model
doesn't acknowledge scale.

"It's an implementation concern;
you shouldn't have to worry about it."

The trouble is, you do have
to worry about it. So you...

● Add indexes
● Add hints
● Write really complex, messy SQL
● Memorize books by Tom Kyte & Joe Celko
● Bow down to the optimizer!
● Denormalize
● Cache
● etc ...

Generally speaking, you poke holes in
the abstraction, and it starts leaking.

So then you hear about this thing
called NoSQL. Can it help?

Maybe. But ultimately, it's just a
different way of physically representing

your same logical data model.

Some things are easier; some are much harder.

If you haven't started by understanding your logical
model, you're doing it wrong.

HBase Architecture: A Brief Recap

HBase Architecture: A Brief Recap

• Scales by splitting all rows into regions

HBase Architecture: A Brief Recap

• Scales by splitting all rows into regions
• Each region is hosted by exactly one server

HBase Architecture: A Brief Recap

• Scales by splitting all rows into regions
• Each region is hosted by exactly one server
• Writes are held (sorted) in memory until flush

HBase Architecture: A Brief Recap

• Scales by splitting all rows into regions
• Each region is hosted by exactly one server
• Writes are held (sorted) in memory until flush
• Reads merge rows in memory with flushed files

HBase Architecture: A Brief Recap

• Scales by splitting all rows into regions
• Each region is hosted by exactly one server
• Writes are held (sorted) in memory until flush
• Reads merge rows in memory with flushed files
• Reads & writes to a single row are consistent

So what does data in HBase look like?

HBase Data Model: Brief Recap

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic byte array, with one row key

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic byte array, with one row key

Not just a bunch of bytes, dude! A k/v map!

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key

Column: a key in the k/v container inside a row

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key

Column: a key in the k/v container inside a row
Value: a value in the k/v container inside a row

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key

Column: a key in the k/v container inside a row
Value: a value in the k/v container inside a row

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key

Column: a key in the k/v container inside a row
Value: a value in the k/v container inside a row

Hold up! What about
time?

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key

Column: a key in the k/v container inside a row
Timestamp: long milliseconds, sorted descending
Value: a time-versioned value in the k/v container

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key

Column: a key in the k/v container inside a row
Timestamp: long milliseconds, sorted descending
Value: a time-versioned value in the k/v container

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key

Column: a key in the k/v container inside a row
Timestamp: long milliseconds, sorted descending
Value: a time-versioned value in the k/v container

The "row" is atomic, and gets flushed
to disk periodically. But it doesn't have
to be flushed into just a single file!

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key

Column: a key in the k/v container inside a row
Timestamp: long milliseconds, sorted descending
Value: a time-versioned value in the k/v container

This "row" guy is atomic, and gets
flushed to disk periodically. But it doesn't
have to be into just one file.

It can be broken up into different store
files with different properties, and
reads can look at just a subset.

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key

Column: a key in the k/v container inside a row
Timestamp: long milliseconds, sorted descending
Value: a time-versioned value in the k/v container

This "row" guy is atomic, and gets
flushed to disk periodically. But it doesn't
have to be into just one file.

It can be broken up into different store
files in whatever way you want, and
reads can choose to look at a subset.

This is called "Column Families". It's
kind of an advanced design option, so
don't think too much about it yet.

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key

Column: a key in the k/v container inside a row
Timestamp: long milliseconds, sorted descending
Value: a time-versioned value in the k/v container

This "row" guy is atomic, and gets
flushed to disk periodically. But it doesn't
have to be into just one file.

It can be broken up into different store
files in whatever way you want, and
reads can choose to look at a subset.

This is called "Column Families". It's
kind of an advanced design option, so
don't think too much about it yet.

From the Percolator paper by Google: "Bigtable allows
users to control the performance characteristics of the
table by grouping a set of columns into a locality
group." That's a good way to think about CFs.

http://research.google.com/pubs/pub36726.html

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key
Column Family: divide columns into physical files

Column: a key in the k/v container inside a row
Timestamp: long milliseconds, sorted descending
Value: a time-versioned value in the k/v container

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key
Column Family: divide columns into physical files

Column: a key in the k/v container inside a row
Timestamp: long milliseconds, sorted descending
Value: a time-versioned value in the k/v container

Calling these "columns" is an unfortunate use
of terminology. They're not fixed; each row can
have different keys, and the names are not
defined at runtime. So you can represent
another axis of data (in the key of the
key/value pair). More on that later.

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key
Column Family: divide columns into physical files

Column: a key in the k/v container inside a row
Timestamp: long milliseconds, sorted descending
Value: a time-versioned value in the k/v container

They're officially called "column qualifiers". But
many people just say "columns".

Or "CQ". Or "Quallie". Now you're one of the cool kids.

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key
Column Family: divide columns into physical files

Column: a key in the k/v container inside a row
Timestamp: long milliseconds, sorted descending
Value: a time-versioned value in the k/v container

What data types are stored in key/value pairs?

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key
Column Family: divide columns into physical files

Column: a key in the k/v container inside a row
Timestamp: long milliseconds, sorted descending
Value: a time-versioned value in the k/v container

What data types are stored in key/value pairs?

It's all bytes.

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key
Column Family: divide columns into physical files

Column: a key in the k/v container inside a row
Timestamp: long milliseconds, sorted descending
Value: a time-versioned value in the k/v container

What data types are stored in key/value pairs?

Row keys, column names, values: arbitrary bytes

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key
Column Family: divide columns into physical files

Column: a key in the k/v container inside a row
Timestamp: long milliseconds, sorted descending
Value: a time-versioned value in the k/v container

What data types are stored in key/value pairs?

Row keys, column names, values: arbitrary bytes
Table and column family names: printable characters

HBase Data Model: Brief Recap

Table: design-time namespace, has many rows.
Row: atomic key/value container, with one row key
Column Family: divide columns into physical files

Column: a key in the k/v container inside a row
Timestamp: long milliseconds, sorted descending
Value: a time-versioned value in the k/v container

What data types are stored in key/value pairs?

Row keys, column names, values: arbitrary bytes
Table and column family names: printable characters

Timestamps: long integers

HBase Data Model: Brief Recap

One more thing that bears repeating: every "cell" (i.e.
the time-versioned value of one column in one row)
is stored "fully qualified" (with its full rowkey, column

family, column name, etc.) on disk.

So now you know what's available.
Now, how do you model things?

Let's start with the entity / attribute /
relationship modeling paradigm,
and see how far we get applying it to HBase.

A note about my example:
it's for clarity, not realism.

For bands & shows, there's not enough data to
warrant using HBase, even if you're tracking every

show by every band for all of human history. It
might be GB, but not TB.

So, back to entities (boxes).
With fancy rounded corners.

What's that in HBase? A table, right?

What's that in HBase? A table, right?
Dramatic foreshadowing: not always ...

And what do entities have?

Attributes!

Attributes!
For example: a "Band" entity might have a "Name" (with values like
"Jonathan Coulton") and a "Genre" (with values like "Nerd Core")

Logically, attributes are unordered.
Their vertical position is meaningless. They're simply

characteristics of the entity.

Attributes can be identifying.
i.e. they uniquely identify a particular instance of that entity.

Attributes can be identifying.
i.e. they uniquely identify a particular instance of that entity.

Logical models usually leave this out, and identity is
implied (i.e. we just assume there's some set of attributes

that's identifying, but we don't have to say what it is)

Attributes can be identifying.
i.e. they uniquely identify a particular instance of that entity.

PK

Physical models refer to it explicitly, like how in a relational
database model you'd label some set of attributes as being

the "Primary Key" (PK).

Attributes can be identifying.
i.e. they uniquely identify a particular instance of that entity.

So in our Band example, neither Name nor Genre is
uniquely identifying, but something like URL might be.

How does this map to HBase?

How does this map to HBase?
Identifying attributes (aka the "PK") become parts of
the row key, and other attributes become columns.

So here's a Band schema.
The row key is the URL, and we have

Name and Genre as attributes.

A much common pattern is to use IDs.
That way, you have an immutable way to refer to this

entity forever, even if they leave MySpace.

A much common pattern is to use IDs.
That way, you have an immutable way to refer to this

entity forever, even if they leave MySpace.

Where do IDs come from? We'll talk about that later.

If there's just a single row key,
how can there be multiple identifying attributes?

Let's call that "mashing".
Which is to say, concatenation, in either a fixed-width

or delimited manner, in the byte array.

Mashing includes several techniques:
● Fixed byte width representation
● Delimiting (for variable length)
● Other serialization (avro, etc.)

Mashing includes several techniques:
● Fixed byte width representation
● Delimiting (for variable length)
● Other serialization (avro, etc.)

Doesn't matter how you do it; the important thing is that any byte
array in HBase can represent more than one logical attribute.

If we want, we can even add types to
the schema definition.

If we want, we can even add types to
the schema definition.

?

If we want, we can even add types to
the schema definition.

?

HBase don't care,
but we do (sometimes).

If we want, we can even add types.
You could also mark things as ASC or DESC,

depending on whether you invert the bits.
?

This is pretty textbook stuff, but here's
where it gets exciting.

This is pretty textbook stuff, but here's
where it gets exciting.

(If you're astute, you'll notice we haven't
talked about relationships yet.)

HBase has no foreign keys, or joins, or
cross-table transactions.

This can make representing relationships
between entities ... tricky.

Part of the beauty of the relational model
is that you can punt on this question.

If you model the entities as fully normalized, then you
can write any query you want at run time, and the DB

performs joins on tables as optimally as it can.

(This relies heavily on indexing.)

In HBase (or any distributed DB)
you don't have that luxury.

Joins get way more expensive and complicated
across a distributed cluster of machines, as do the

indexes that make them happen efficiently.

HBase has neither joins nor indexes.

You have two choices, if you need
relationships between entities.

You have two choices, if you need
relationships between entities.

● Roll your own joins

You have two choices, if you need
relationships between entities.

● Roll your own joins
● Denormalize the data

Rolling your own joins is hard.

You'll probably get it wrong
if you try to do it casually.

Ever implemented a multi-way merge sort by hand?

Denormalizing is fun!

But it also sucks. We'll see why.

The basic concept of denormalization is simple:
two logical entities share

one physical representation.

The basic concept of denormalization is simple:
two logical entities share

one physical representation.

Of course, there are lots of ways to skin a cat...

Let's look at standard relational database
denormalization techniques first.

In a relational database, if the
normalized physical model is this:

You could start with the Band, and give it
extra columns to hold the shows:

You could start with the Band, and give it
extra columns to hold the shows:

That's pretty obviously a bad idea, because
bands can play a lot of shows.

WTF?

You could also just give it an unstructured
blob of text for all the shows.

You could also just give it an unstructured
blob of text for all the shows.

But then you've given up
the integrity of your data.
(Which might be fine.
If so, stop here.)

You get similar problems if you try to bring
all the info into the Show table.

Another solution is to focus
on the junction table.

And pull in copies of the info
in the other tables:

Leaving you with one table, with
one row per band/show combination:

The cons to this should be self-evident.
Updating and querying are more complicated, because

you have to deal with many representations of the "same"
data, which could get out of sync, etc.

But the pros are that with huge data,
answering some questions is much faster.

(If you happen to be asking the query in the same way
you structured the denormalization, that is.)

So back to HBase. How do you
denormalize in an HBase schema?

HBase columns can be defined at runtime.
A column doesn't have to represent a pre-defined attribute.

HBase columns can be defined at runtime.
A column doesn't have to represent a pre-defined attribute.

In fact, it doesn't have to be an attribute at all.

A set of dynamically named columns
can represent another entity!

If you put data into the column name,
and expect many such columns in the same row,

then logically, you've created a nested entity.

You can scan over columns.
See: hadoop-hbase.blogspot.com/2012/01/hbase-intra-row-scanning.html

http://hadoop-hbase.blogspot.com/2012/01/hbase-intra-row-scanning.html

So we can store shows inside bands.
Which is like the denormalization we say earlier,

except without the relational DB kludges.

HBase don't care.
It's just a matter of how your app treats the columns. If you

put repeating info in column names, you're doing this.

Note!

Why is this so difficult for most
relational database devs to grok?

Because
relational databases have no concept of nested entities!

You'd make it a separate table in an RDBMS, which is more
flexible but much more difficult to optimize.

It's very difficult to talk about HBase
schemas if you don't acknowledge this.
You don't have to represent it this way (with a nested box) but

you have to at least acknowledge it. And maybe name it.

But, once you do acknowledge it,
you can do some neat things.

Nested entities can have attributes,
some of which are identifying.

Identifying attributes
make up the column
qualifier (just like
row keys, it could be
multiple attributes
mashed together)

Nested entities can have attributes,
some of which are identifying.

Nested entities can have attributes,
some of which are identifying.

Non-identifying
attributes are held
in the value (again,
you could mash
many attributes in
here)

Identifying attributes
make up the column
qualifier (just like
row keys, it could be
multiple attributes
mashed together)

Shows is nested in Band
show_id is the column qualifier

Other attributes are mashed into the value

The column qualifier
is the show id.

Everything else
gets mashed into
the value field.

1 table can have many nested entities,
provided your app can tell them apart.

How do you tell them apart?
With prefixes ...

qualifier starts with:
"s" + show_id
"a" + album_id
"m" + name

Where can you
nest entities?
Knock yourself out.

Where can you
nest entities?
Knock yourself out.

● In columns

Where can you
nest entities?
Knock yourself out.

● In columns
● Two levels deep in

columns!

Where can you
nest entities?
Knock yourself out.

● In columns
● Two levels deep in

columns!
● In the row key?!

Where can you
nest entities?
Knock yourself out.

● In columns
● Two levels deep in

columns!
● In the row key?!
● Using timestamps as a

dimension!!

This is a fundamental modeling
property of HBase: nesting entities.

Wait, what about Column Families?

They're just namespaces--additional
vertical sections on the same entity.

Where column families aren't shown
explicitly, let's assume there's just one.

So that brings us to a standard way to
show an HBase schema:

Table: Top level entity name, fixed at design time.

Row key: Can consist of multiple parts, each with a
name & type. All data in one row shares the same
row key. Can be nested.

Column family: A container that allows sets of
columns to have separate storage & semantics.

Column qualifiers: Fixed attributes--design-time
named columns, holding a value of a certain type.

Nested entities: Run-time named column qualifiers,
where the qualifier is made up of one (or more)
values, each with a type, along with one or more
values (by timestamp) which also have a type.

Nested versions: Because multiple timestamped
copies of each value can exist, you can also treat the
timestamp as a modeled dimension in its own right.
Hell, you could even use a long that's not a
timestamp (like, say, an ID number). Caveats apply.

"But," you say, "what if I don't have all
of these fancy modeling tools?"

Say it in text.
XML, JSON, DML, whatever you like.

<table name="Band">
 <key>
 <column name="band_id" type="int" />
 </key>
 <columnFamily name="cf1">
 <column name="band_name" type="string"/>
 <column name="hometown" type="string"/>
 <entity name="Show">
 <key>
 <column name="show_id">
 </key>
 <column name="date" type="date" />
 </entity>
 </columnFamily>
</table>

Text is faster and more general, but
slightly harder to grok quickly.

So we'll stick with diagrams here.

Some examples are in order.

Relational Schema: Applicants & Answers

Standard parent/child relationship. One Applicant has many
Answers; every Answer relates to a single Applicant (by id). It
also relates to a Question (not shown). SQL would have you JOIN
them to materialize an applicant and their answers.

Example 1: a simple parent/child relationship

HBase Schema: Answers By Applicant

● Answer is contained implicitly in Applicant
● If you know an applicant_id, you get O(1) access
● If you know an applicant_id AND question_id, O(1) access
● Answer.created_date is implicit in the timestamp on value

HBase Schema: Answers By Applicant

● You get answer history for free
● Applicant.applied_date can be implicit in the timestamp
● More attributes on applicant directly? Just add them!
● Answers are atomic and transactional by Applicant!!

Example of rows in HBase:

Before you get too excited, remember
that there are cons to denormalization.

The cons:
● Nested entities aren't independent any more.

○ No: "SELECT avg(value) FROM Answer WHERE question_id = 123;"
○ But you can still do that with map/reduce

● This decomposition only works in one direction.
○ No relation chains without serious trickery.
○ Timestamps are another dimension, but that counts as trickery.

● No way to enforce the foreign key to another table.
○ But would you really do that in a big RDBMS?

● On disk, it repeats the row key for every column
○ You didn't really save anything by having applicant_id be

implied.
○ Or did you? Compression negates that on disk ...
○ ... and prefix compression (HBASE-4218) will totally sink this.

https://issues.apache.org/jira/browse/HBASE-4218

Relational Schema: Users And Messages

Many-to-many relationship. One User sees many Messages, and
a single Message can be seen by many Users. We want to do
things like show the most recent message by subject (e.g. an inbox
view).

Example 2: dropping some database science

What kind of SQL would you run on this? Say, we
want to get the most recent 20 messages for 1 user.

SELECT TOP 20
 M.subject,
 M.body
 FROM
 User_Message UM
 INNER JOIN Message M
 ON UM.message_id = M.message_id
 WHERE
 UM.user_id = <user_id>
 ORDER BY
 M.sent_date DESC

Seems easy, right? Well, the database is doing
some stuff behind the scenes for you:

Assuming no secondary indexes, it might:
● Drive the join from the User_Message table
● For each new record with our given user_id, do a single

disk access into the Message table (i.e. a hash_join)
● Get the records for *every* message for this user
● Sort them all
● Take the top 20

No shortcuts; we can't find the top 20 by date w/o seeing ALL messages.

This gets more expensive as a user gets more messages. (But it's still
pretty fast if a given user has a reasonable number of messages).

How could you do this in HBase?
Try the same pattern as parent / child?

1. Because of the many-to-many, you now have N copies
of the message (one per user).

○ Maybe that's OK (especially if it's immutable!). Disk is cheap.
2. Your statement has to do the same amount of work, but

now you have to do it yourself. :(

If I �know that I always want it ordered by date, why
not store it that way?

● Now I can scan over messages by date until I get
enough; it's O(1)

● But what if I want it by message_id again? Doh.
I'm screwed, unless ...

I store it both ways!

Nice: updates to this are transactional (consistent) for a given
user, because it's all in one row. So it's not a bear to maintain.

Which I could even do in different column families ...

(Makes sense if I don't usually access them at the same time; I only
pay the cost for the query I am running.)

So, for example ...

Or I could just use the by-date one as an "index" ...

So I only store the subject and body once.
This means I need to perform my own "join" in code.

See a theme emerging?

Relational DBs lull you into not thinking about physical
access as much; but when you have to scale, there are hard

limits.

HBase makes you think about it sooner, but gives you the
tools to think about it in more a straightforward way.

Example 3: Flurry
See: http://www.flurry.com/data/

● One row per device
● Nested entity in CF "Sessions"

○ Polymorphic "fragments"
of session reports

○ Map/Reduce transforms

Caveat: this is based on email exchanges, so the details
may be wonky, but I think the overall point is right.

http://www.flurry.com/data/

Example 4: Indexes
Example from Andrew Purtell

● Using one table as an index into another often makes sense
● Can't be transactional (without external coordination)
● So you have to keep it clean, or tolerate dirty indexes
● Note that there are several attempts to add solid general

purpose indexing to HBase, but so far none have caught on.

Same caveat: this is based on email exchanges, so the
details may be wonky, but I think the overall point is right.

Here are some more design patterns.

0: The row key design is the single
most important decision you will make.

0: The row key design is the single
most important decision you will make.

This is also true for the "key" you're putting in the
column family name of nested entities.

1: Design for the questions,
not the answers.

1: Design for the questions,
not the answers.

(hat tip to Ilya Katsov from the High Scalability blog
for this useful way to put it; and possibly to Billy

Newport or Eben Hewitt for saying it first.)

1: Design for the questions,
not the answers.

Let's be clear: this sucks big time,
if you aren't 100% sure what the

questions are going to be.

Let's be clear: this sucks big time,
if you aren't 100% sure what the

questions are going to be.

Use a relational DB for that!
Or a document database like CouchDB ...

"But isn't NoSQL more flexible than a
relational DB?"

For column schema? Yes!
For row key structures, NO!

2: There are only two sizes of data:
too big, and not too big.

2: There are only two sizes of data:
too big, and not too big.

(That is, too big to scan all of something
while answering an interactive request.)

2: There are only two sizes of data:
too big, and not too big.

3: Be compact.
You can squeeze a lot into a little space.

3: Be compact.
You can squeeze a lot into a little space.

This is also important because the
rowkey and CF name are repeated for
every single value (memory and disk).

File compression can negate this on disk, and prefix
compression will probably negate this in memory.

4: Use row atomicity as a design tool.
Rows are updated atomically, which gives you a form

of relational integrity in HBase!

4: Use row atomicity as a design tool.
If you made this two HBase tables, you couldn't

guarantee integrity (updated to one could succeed,
while updates to the other fail).

4: Use row atomicity as a design tool.
If you make it one table with a nested entity, you can

guarantee updates will be atomic, and you can do
much more complex mutations of state.

5: Attributes can move into the row key
Even if it's not "identifying" (part of the uniqueness of

an entity), adding an attribute into the row key can
make access more efficient in some cases.

5: Attributes can move into the row key
Even if it's not "identifying" (part of the uniqueness of

an entity), adding an attribute into the row key can
make access more efficient in some cases.

5: Attributes can move into the row key
This ability to move things left or right (without

changing the physical storage requirements) is part of
what Lars George calls "folding".

Also, if you like this subject, go watch his videos on
advanced HBase schema design, they're awesome.

6: If you nest entities, you can
transactionally pre-aggregate data.

You can recalculate aggregates on write,
or periodically with a map/reduce job.

Practically: how do you load schema
into HBase?

Practically: how do you load schema
into HBase?

Direct actuation: https://github.com/larsgeorge/hbase-schema-manager

https://github.com/larsgeorge/hbase-schema-manager

Practically: how do you load schema
into HBase?

Direct actuation: https://github.com/larsgeorge/hbase-schema-manager
Coming soon: script generation: https://github.com/ivarley/scoot

https://github.com/larsgeorge/hbase-schema-manager
https://github.com/ivarley/scoot

Thank you!

Questions? @thefutureian

https://twitter.com/#!/thefutureian

