Copyright
by
lan Thomas Varley

2009

No Relation: The Mixed Blessings of Non-Relationdbatabases

by

lan Thomas Varley, M.S.E.

Report
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin
August 2009

The Report committee for lan Thomas Varley

Certifies that this is the approved version of thdollowing report:

No Relation: The Mixed Blessings of Non-Relationdbatabases

APPROVED BY

SUPERVISING COMMITTEE:

Supervisor:

Adnan Aziz

Co-Supervisor:

Daniel Miranker

Dedication

To my wife Jill,
without whose unending support

| most certainly would not be here today.

Acknowledgements

| would like to acknowledge the generous supponngfmany professors at the
University of Texas who have given graciously ddititime in support of my education
and research over the past two years; especiatbje$zors Daniel Miranker and Adnan
Aziz, who advised on this project; and Professonsigiine Julien and Joydeep Ghosh,

whose courses and research heavily informed th& enein.

14 August 2009

Abstract

No Relation: The Mixed Blessings of Non-Relationdbatabases

lan Thomas Varley, M.S.E.

The University of Texas at Austin, 2009

Co-Supervisors: Adnan Aziz and Daniel Miranker

This paper investigates a new class of databagensysloosely referred to as
"non-relational databases,” which offer a subsettraflitional relational database
functionality, in exchange for improved scalabiliperformance, and / or simplicity. We
explore the differences in conceptual modeling mémpliies, and examine both the
advantages and limitations of several classes ofewctly available systems, using
running examples of real-world problems as implet@enn both a traditional relational

database model, as well as several non-relationdkis.

Vi

Table of Contents

IS o) T[RRI IX
SECTION 1: INTRODUCTION 1
Notes on Diagram Stycooiiiiiiiieieeeeeee e 3.
NOtes 0N TermMiNOIOQYuuuuurruiiiiiei it e e e e e 5.
SECTION 2: INTRODUCTION BY EXAMPLE 6
One Table: JOb OPENINGS.....cccceeiieiieeeeeeeeeeeee e e e e 6..
Many To One: Basic Employment Application....ccca.ueeeceiininniieeeeeeeeeee, 8
Many-To-Many: Questions And POSItIONScoueeeeviiiiiiiiiiiiiieaneeeeeeeeee 15
Entity/Attribute/Value: Extensible Application Fas..................oovvvvennnnnnn. 19
Analytical REPOIINGcuuuuiiiiiiiieie e eeemmce e 27
Massive Multiplicity: Keyword Searchccoeeveiiiiiiiiiiii e, 30
SECTION 3: BENEFITS 35
SeMI-SrUCIUIrEd Dat@l.......uueeeiiiiieie e et 36
Alternative Model Paradigmscccooveeeieeemcciiii e 37
Multi-Valued Properti€s.........oooiiiiiiiiiiieeeemieiiiiiiiaese e e e e e e e e e eeeeeeeeeieneee 39
Generalized ANAIYEICSuuueiieiie e 44
RV 65 o] I 1S (o Y/ PSSP 45
Predictable Scalabilityoooiiiii e 49
SCNEMA EVOIULION ...ttt 52
SECTION 4: DETRIMENTS 54
Ease Of EXPreSSIONcccouuuuuuiiiiiiie s et 55
Understanding Your Dataccocooiveeeeisceeeeeeecccce e 56
Concurrency and TranSacCtiONS.ooviiccceeeeeeeiiiiiiae e e e e e e eeeeeeeeeeees 57
(0] 1] 151 1=] 0 [0 V20 61
Relational INtegIityovvvveeiiiiiiiieeeee e e e e e e e e e e 63
StaNAardizationuueueiiiiiii e 66
ACCESS CONLIOL ... e e e 67

SECTION 5: SURVEY 69

Google App ENgine Datastorecccoeiiccceeeeeeeeeeeeeee e e e e e 70
Amazon SIMpPIEDB / M/DBi..........coouiuiiiiiiieeeeeeeiiiirss e e e e e e eeeeeeeaannens 70
Microsoft SQL Azure / Dryad LINQ.........ouvuiiceeiiiie e 72
Bigtable / HyperTable / HBaSE........cccoovviiiiiiiie e 73
DYNAMO / DYNOMILE.....uiiiiieieie i et e e e e e e e e e e e e eeeeeeenanne 75
Project Voldemort (LinkedIn Data Store)......coeeeeevvveeiiiiiiiiinneeeeeeeeeeeee 77
Cassandra (Facebook Data StOre) ..o eeeeeeeeeeeeeeeeeennnnnsninnenenene. (8
CoUCNDB / MONQODBcuuuiiiiiiiiie e 79
(@1 1= £ PP PRUPPR PP 81
SECTION 6: DESIGN STRATEGIES 84
DeSigN QUESHIONSuuuieeiiiiiiiiee e e ettt e e e e e e e e e e e e eeeas 84
DTS o IS (= 1T 1= 91
Logical MOl FirSt.......cooeuiiiiiiiiiii ettt 91
Consider Several Physical Approachesccooeeiiiiiiiiiiiieenennn, 92
Keep It SIMPIE ..o eremmr e 93
Play It SAF@ ..o e Q3
Show Your True CONSISIENCYcceeevvveesmmmmmr e eeeesennne e e e e e e eaaeaaeas 94
Stick To The Map (REAUCE)........cceeeieiiiiieeeeeee e 94
EVOoIve Gracefully ... 95
The One True Database?...........uuuiiiiiiimmeeiiiiiiiiiiie e e e 5.9
Modeling CONSIIUCESccoiiiiiiiiiiiiicemmmm e 96
Schema Translation.............ccoooiiiii s 97
Referential OVerlaysccooov i 99
Pluggable ArchiteCtures...........oooevviiiiieemmeeiiiiiceee e 100
SECTION 7: ANALYSIS & CONCLUSIONS 101
2] 0] [ToTo =1 o] 0)2 104
AV - PSS 108

viii

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10

Figure 11

Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:

Figure 21:

List of Figures

UML diagram of a single entity, POSItiQN.................cviiiiiiieiiieeeeeeeeeeeeeeee, 6
Physical Relational Database Model f8irayle Entityccccoeeveiiieeeeennnnnne. 7
Logical model for many-to-one relationshL............ooovvviiiiiiiiiiiiiie e 8
Physical model diagram for a Many-to-oglationshipccccceeeiiiniinnnn. 9
Logical data model for Many-to-many redaship............cccccoeeeeiiviieeiiiiiiinnnnns 16
Physical data model for Many-to-manytietashipccceveieiiiiiieeeeeennn. 16
Bigtable schemas for many-to-many refeiop...........cccooeeeeeeeiiiiiiieiiiiinnns 8.1
Entity with “Ducket” COIUMNS ... 20
Entity with “bDIob” column ... 20

: Normalized question / answer MOdel.uaee..cooovvveeeiiiiiiiiiiiiie e, 22

. Full physical relational model for quess and answers...........cccceeeeeeeeeeeeee. 23

Logical (left) and Physical (right) méglef term storage within documents 31

Relational model of a graph ... e eeeeeeeeieieeiicr e 38
User / email denormalized model.............ooooiiiiiiiiiiiii e, 40
Normalized model of user with emails................viiiiiiie, 41
Non-relational model of user and emails................coooeeiiiiiiiiiiiiiiiieen. 43
APPHCANT ENLILY ..o e 46
Applicant history table with timestamp.............coovvvviiiiiiiin e, 47
Historical versions implemented as aditamhal tablecccoeeiiiiiinnens 48
Historical version using an entity/dirie/value model...........ccccceeeeevieennnnnn. 49
Denormalized Applicant ENtitY.....ccccceeeeeeiiiiiiieeeer e 65

SECTION 1: INTRODUCTION

The history of the relational database has been aineontinual adversity:
initially, many claimed that mathematical set-basgatlels could never be the basis for
efficient database implementations; later, aspighgect oriented databases claimed they
would remove the "middle man" of relational datasagrom the OO design and
persistence process. In all of these cases, thraugbmbination of sound concepts,
elegant implementation, and general applicabiti®&yational databases have become and
remained the lingua franca of data storage andpuéation.

Most recently, a new contender has arisen to aigdlethe supremacy of
relational databases. Referred to generally as-falational databases” (among other
names), this class of storage engine seeks to lweak the rigidity of the relational
model, in exchange for leaner models that can parfand scale at higher levels, using
various models (including key / value pairs, shdr@grays, and document-oriented
approaches) which can be created and read effigiaatthe basic unit of data storage.
Primarily, these new technologies have arisen timasons where traditional relational
database systems would be extremely challengisgdle to the degree needed for global
systems (for example, at companies such as Go¥glepo, Amazon, LinkedIn, etc.,
which regularly collect, store and analyze massiaga sets with extremely high
transactional throughput and low latency). As of ttwriting, there exist dozens of
variants of this new model, each with differentaaipities and trade-offs, but all with the
general property that traditional relational desigas practiced on relational database
management systems like Oracle, Sybase, etc.—ttsengiossible nor desired.

The aim of this paper is to explore the conceptiggign space of non-relational
databases as compared to traditional relationabdats. It is clear that the design needs

1

of the two paradigms are different, but how fundatakare the differences, and what
strategies can we use to transition our concepiesigns from one to the other?

In Section 2, we introduceranning example, with some in-depth analysis of the
problem scenarios and their solutions, first iratiehal SQL database designs, and then
in some example non-relational database desigris. Wit introduce the basic concepts
of non-relational databases in an informal way, aedin to lay the groundwork for
further detailed explorations.

In Section 3, thdenefits of various non-relational approaches will be eixpd
in depth, in terms of simplicity (fewer servicesadeto less complexity), scalability
(weaker integrity assumptions lead to more dimemsiof concurrency), and raw
performance (fewer features means fewer layerass fhrough).

Section 4 further explores tlgetriments of moving from a relational database to
a non-relational database, specifically relatedrtpoverished modeling constructs and
consistency guarantees: the effects of denormalizatack of relational integrity,
lowered expressive power, and potential lack of B@toperties.

Following the “good cop / bad cop” discussion oftgms 3 and 4, Section 5 will
provide a detailedurvey of many of the currently available non-relatiodatabase store
implementations, comparing several dimensions afufes and modeling concepts that
each of these systems employ.

Section 6 then introduces sevedakign strategieghat might guide our thinking
about conceptual design and its transition intonthre-relational world. Some suggestions
are made about key/value modeling conventions ritain some of the advantages of
relational databases, as well as design pattemséthodically transforming one to the

other.

Finally, Section 7 provideanalysis and conclusions,offering a vision for a
future path that database technologies can treadtémpt to gain benefits from both

paradigms.

Note: the focus of this paper is on ttaceptual data design options available
within a non-relational store as compared to tradél relational database design. It does
not directly deal with issues of performance, duitg, cluster distribution and
management, etc., except insofar as touching @ettopics is required to understand the
rationale behind the core concepts of non-relatisttaes. The topics of performance and
scalability alone would far outstrip the scope luktreport, especially considering how
widely they vary across the implementations we hsweveyed. There are convincing
arguments to be made regarding the scalabilitypmmtbrmance advantages gained from
non-relational stores, in the right situations, ethjustify their emergence and continued
development. Interested readers are encourageslvie ihto theBibliography section to
find more references on these topics, or more itaptdy, to engage in their own
research efforts to understand the performanceactaistics of these systems in the

context of their own work.

NOTES ONDIAGRAM STYLE

This paper uses a slightly restricted dialect of lUMr describing the logical and
physical schemas of traditional relational datalmes#gns, based in part on the modeling

conventions of [Hay, 1995]. It differs from standdML in the following minor ways:

* Rather than using a single descriptor on relatigsstwhich can be ambiguous

regarding the directionality of the relationshige typically use two role names at
3

the ends of the relationship, indicating the natfrthe relationship as it would be
used in a sentence. This allows us to translaeeitijrfrom diagrams into sensible
English, such as "Every Employee works for one Camyp a Company may
employ many Employees."

The traditional annotations "1", "0...1", and '"®"..are used to indicate the
cardinality of a relationship. For additional ctgrion the multiplicity of
relationships, crows' feet are also used to indicite "many" side of a
relationship, as this aids in quick visual intetpt®n of data diagrams. These
annotations (as with role names) are retained énttansition from logical to
physical diagrams, though in the latter they do Imte any special properties
beyond documentation. If the labels representedyr@many relationships in
the logical model, the same names are retainedised only once in the Physical
model, because the junction table is only used@syaical implementation, not a
logical design.

By convention, the direction of crows' feet alwga@nts up and to the left on
diagrams (with the exception of "many to many" tielaships on logical
diagrams, which obviously have crows' feet in kditkctions). This has the effect
of placing concrete entities towards the bottorhtrigide of the diagram, and
derived or relational entities towards the top,lefhd generally establishes a
standard flow to diagrams, making them easierterpmet quickly.

Navigability arrows are never included, as datatiestare typically considered
directionless and have navigability in both direns in all cases.

Aggregation / composition indicators (diamonds)mseused, mainly because the
information they add is not an inherent part of elody the physical

representations of the examples used in this repooday's relational databases.

4

» Entities begin with a capital letter, and attritsubegin with a small letter.

* The third section of an entity diagram, which igdisn object modeling to show
operations, but in data modeling to show keys atationships, is only displayed
when this information would not be redundant arat bbvious. Typically, the
"PK" and "FK" markers next to attributes are suffit to prevent ambiguity.
“PK” markers next to multiple attributes indicate@mposite primary key; "PFK"

indicates an attribute that is both a primary andign key.

NOTES ON TERMINOLOGY

In this report, the word®BMS and database are used interchangeably. This is
contrary to the prescriptive usage, which says datdbase should always refer to the
actual collection of data, whereB8BMS (or “Data Base Management System”) should
always refer to the software which manages theectdn of data (the same goes for the
RDBMS, or Relational DBMS; and the NRDBMS, or Noei&ional DBMS).

There is nothing wrong with this prescriptive usapewever, the common
descriptive usage of these terms is that theyras¥changeable and can be understood
based on context. If we refer to tbapabilities of a database, we are clearly speaking of
DBMS software, because raw data has no capabitigesay. If we refer to some entities

or attributescontained in a database, we are clearly speaking of it aslaatimn of data.

SECTION 2: INTRODUCTION BY EXAMPLE

We will begin our exploration of the differences @onceptual modeling for
relational and non-relational databases using aplsimexample that grows more

complicated over time.

ONE TABLE: JOB OPENINGS

Consider the following simple scenario: a businegnts to advertise job
opportunities on their website. Given a set of opesitions maintained by the Human
Resources department, with a handful of attribdéeseach, we want to display this
information dynamically on a public-facing web page

This scenario essentially describes what everybdata (relational or otherwise)
would refer to as an "entity” or "table". We widiel this entity as "Position”, and give it

several sample attributes. We represent this wssigiple UML diagram:

(- -
Position

job_title string
open_date date

close_date date

salary float
description string
-)

Figure 1: UML diagram of a single entity, Position

The organization might advertise several Positiongh job titles such as
"Accountant” and "Night Janitor”, each with attriesi such as "salary”, "description”,
"location”, etc. Each would be a single tuple iis tfimple relation.

To use a relational database to power this infaongtwe define a physical
relational model for it, which looks similar to thegical model in this case. The only
difference is the addition of primary key, which uniquely identifies each position.
Common industry practice in relational databasetoisise auto-incrementing integer
fields as primary keys for many entities, ratherntho construct complex primary keys
that reflect particular (and possibly misundersjoogsiness rules. In this case, we have

added an "id" attribute to Position as its primkey (because, for example, there might

legitimately be multiple positions with the samttetiopen date, location, etc.).

(" N)
Position
position_id integer
job_title string

open_date date
close date date

salary float
description string

- J

Figure 2: Physical Relational Database Model f8irayle Entity

Our simple application now consists of merely ragdand writing records in this

table. Regardless of the technology used to imphtmer database—be it an RDBMS, a

1 Of course, we have little impetus to use a fulitienal database for such a simple example; wéddast
as easily write the information in a flat file oM document; but bear with us, as the example getl
more complex.

7

non-relational key/value store, or a flat file—ocwnceptual model is identical: one

entity.

MANY TO ONE: BASIC EMPLOYMENT APPLICATION

Having seen the ease with which we completed #gsiest, our HR department
has now come to us with a new task: they would tikallow potential future employees
to fill out their personal information via the wphge, and apply for jobs online. Further,
they would like the ability to do queries acrossagplicants, to help narrow the search
for the perfect person for the job; for examplehd® me all applicants in New Jersey

who have 5+ years’ experience as an electriciareamavilling to relocate ...", etc.

Logical Model

Consider the most basic addition to our logicaksch: there are now Applicants,

each of which is related to one Position:

) é i
Applicant Position
name string job_title string
birth date date L7 1| open_date date
address string [applies to is| close_date date
) applied
source string to by salary float
applied _date date description string
_) AN /

Figure 3: Logical model for many-to-one relationshi

Individuals would choose a Position (e.g. "Accoutita and fill in their personal
details, creating Applicant records for any positihey are interested4nThis is the
classicmany-to-one relationship in data modeling; one Position ist@d to any number

of Applicants, and each Applicant is related toyase Position.

Relational Physical Model

Moving into a relational database physical schemea,can adorn the logical
diagram with several new attributes that act am@ry and foreign keys for relational

database tables:

R (" i,
App“cant Position
applicant_id integer position_id integer
position id integer | 0+ 1 job_title string
name string applies to is open_date date
. lied
b|rth_date date aptpOIEy c|05e_date date
address string salary float
source string description string
applied_date date
- J
o _J

Figure 4: Physical model diagram for a Many-to-oglationship

As with our Position table, we have added an idientifield to indicate the

uniqueness of each instance of an Applicant (sifime,example, one person might

2 There are naturally many other facets of the weald situation that could be included here, susiha
fact that one applicant might realistically appdy fultiple jobs, in which case we could, say, dgivem a
user account and password with which to manage ttingtiple applications. We'll ignore that level of
detail for now, in favor of the simpler many-to-omedel.

9

theoretically apply multiple times, even to the saposition}. We then connect the two
entities via a foreign key relationship on the 'lfoa_id" attribute of the Applicant
entity, indicating that each Applicant "applies t&Xactly one Position, and each Position
may be "applied to by" multiple Applicants.

Sample data for this physical table layout mightbmething liké&

Table "Position":

position_id job_title open_date close_date salar y description
1001 Accountant 4/1/2010 5/1/2010 50000 .00 Cooks the books
1002 Janitor 6/1/2010 7/1/2010 30000 .00 Cleans the loo

Table "Applicant":

applicant_id position_id name birth_date state applied_date ...
30001 1001 Ned Flanders 4/5/1958 Nevada 9/1/2009
30002 1001 Homer Simpson 7/1/1962 Texas 10/2/2009

30003 1002 Bill Smith 1/1/1900 California 11/4/2009

This relational model is quite straightforward: riheare only two entities,
connected by a single relationship, and in thedbease, this enables the entire range of
functionality described in the problem statemene @én craft a simple SQL query to

show us only the open positions:

SELECT *
FROM
Position
WHERE
open_date <= CURRENT_TIMESTAMP()
AND close_date >= CURRENT_TIMESTAMP()

3 Again, we could have used a composite primary wdych would be the more pure approach in set
mathematics, but the practice of assigning a pnirkay id field is nearly ubiquitous in commercial
application development

4 Note that the "..." indicate both additional rowshe relation, as well as additional attribulés "phone

number", "years of experience", etc.
10

We can use INSERT and UPDATE statements to creatk raodify the

information for a specific applicant:

INSERT INTO Applicant (
position_id,
name,
birth_date,

) VALUES (
@position_id,
@name,
@birth_date,

)

We can then query against a join of these two satdesee a full report of all
applicants and the positions they applied to. We algo restrict this search by giving
WHERE clauses against any of the attributes ineeitable, such as a query for all
applicants in New Jersey who are applying for joith salaries of over $100,000, sorted

by name:

SELECT P.job_title, A.name, A.birth_date, ...

FROM

Position P

INNER JOIN Applicant A

ON A.position_id = P.position_id

WHERE

P.salary > 100000

AND A.state = 'New Jersey'
ORDER BY

A.name

Our use of a relational database completely hitlesspecific implementations
used to achieve these ends - finding relevant fudiipgs on disk and caching them in
memory, writing new applicant records to disk, neggthe information about positions
and applicants in memory, filtering the results Bgolean expressions, sorting the

results, etc; the declarative nature of SQL syrtampletely isolates us from these

11

details. Aside from the possibility of speeding fupure searches by creating indexes
(which may be desirable for performance, but is meofuired for correctness), we are
finished with the entire specification of the datefinition and access, and can
immediately write additional business logic on tdpthis framework to enforce business

rules, display forms, etc.

Non-Relational Model

How would we recreate this simple data model desigder a non-relational
schema? As an example, we will describe an impléatien using the Google App
Engine data store, since its syntax in Pythonrgpk and clear, and it was specifically
created to be easy to use and reminiscent of sektdatabases, while only providing the
services typical of key/value stores because afrifdementation as a massively scalable
cloud computing service.

The two entities of our logical data model, Positend Applicant, become the

two data objects, or Entities, in our non-relatichgta model:

class Position(db.Model):
job_title = db.StringProperty(multiline=False)
open_date = db.DateTimeProperty(auto_now_add=Fa Ise)
close_date = db.DateTimeProperty(auto_now_add=F alse)
salary = db.StringProperty(multiline=False)
description = db.StringProperty(multiline=True)

class Applicant(db.Model):
position = db.ReferenceProperty(Position)
name = db.StringProperty(multiline=False)
birth_date = db.DateTimeProperty(auto_now_add=F alse)
address = db.StringProperty(multiline=False)
source = db.StringProperty(multiline=False,
choices=set(["employee referral”, "recruiter"”, "adv ertisement'))
applied_date = db.DateTimeProperty(auto_now_add =True)

12

Each of these classes, the Position and the Apyplican be thought of as its own
distributed hash table; every tuple has a key €sysissigned in this case) which is used
as the hash locator value, and a "value" whichllishe other information about the
record. There are exactly 3 operations that caddoe on the data store hash table: put,
get, and delete. Beyond that, the database engrléoffers few additional features.

Notice first that we have actually moved back ie tirection of our original
logical model; there are no "id" properties on thestities, because each instance of an
entity is automatically given a system-designatezy/™ property which is its key into the
data storage engine. A shadow of relational integan be intimated by using keys from

one entity as properties of another, as the folgwdode snippet illustrates:

pos = Position()
pos.job_title = "Accountant"
pos.put()

app = Applicant()

app.position = pos.key()
app.name = "Homer Simpson"
app.put()

Note that this is not full relational integrity, demuse relationships are not
enforced; we will explore the implications of thisgree of relational integrity below.

Getting a list of the currently active positionspiies using a filtered query, which
is supported by the App Engine when we create aexrthat covers the fields in

question:

positions = Position.all()
positions.filter("open_date <", date.now).filter("c lose_date >", date.now)
for position in positions:

display the position in the list ...

5 As mentioned above, there are restrictions onfillesing ability in that the results ultimatelyad to
appear in a single index in contiguous order, &nd tannot use arbitrarily complex inequality corrgmm
operators on multiple items

13

Getting a list that is a "join" of Applicants witlheir Positions, however, is a
harder task. To maintain our sort order (ascentyngpplicant name), we must first
iterate over Applicants, and then for each Applicare must retrieve the data about what

position it was for:

applicants = Applicant.all()
applicants filter("state =", "New Jersey")
for applicant in applicants:
position = applicant.Position()
show data containing attributes of both posit ion and applicant objects

Notice that here, for the first time, we are domdair amount of work in the
client tier that was done for us automatically e trelational model, with a JOIN
operation. The work in this example is not complext for arbitrarily complex multi-
way joins, this could get quite confusing and epmné. The subject of doing efficient
in-memory joins for large database tables is a iheatudied and optimized area of
research, and for the biggest cases, it is highlikely that a developer of average skill
would correctly implement the level of sophisticatin, for example, a two-phase multi-
way merge sort, or a hash join.

Consider also that if our application offers mu#igort orders as a feature (for
example, by clicking on the column headers in d tpire-sort), we might need to either
cache the intermediate result in memory, or constmultiple versions of the code that
construct and sort the values in different wayschilag the values in memory is not
difficult, but might not be possible for very largiata sets; the relational database
properly abstracted the situation for us in eiitese, but the non-relational database does

not.

6 This begs the question as to why our data is stred in such as way as to even require large alyi
joins, if we are not using a relational databasagigm; this is a question we will return to later.

14

It should be clear by this point that there is sofpetentially large) class of
operations that we can achieve declaratively, witheffort, in a SQL database, which
require significant programming in a non-relatiordtabase. That said, there is no
evidence of a lack of expressiveness; everythingwenree able to do with our relational
schema, we have been able to faithfully mimic wilie non-relational schema, albeit
with some addition of effort for the case of mooenplex queries. Let us next move on to

an extension of this example that gives the noaticeial database the upper hand.

MANY-TO-MANY: QUESTIONS AND POSITIONS

Consider now that our Human Resources departmentrdétarned to us and
suggested that each open position might actuatig medifferent set of questions - that is,
instead of just one standard set of questions dégss of position, we now need to ask
different questions depending on the job, and retde form dynamically, changing
continually as users imagine new and ever moreiagajuestions for future employees.
We might ask the accountant to declare what year sbe got a CPA, whereas we might
ask the Night Janitor to list "years of mopping exence”. Of course, all the other
requirements -- the need to create open positgetsapplicant input, and enable searches
and reporting on the resulting applicant pool e still in effect.

Let us further assume, for the sake of exampld, ttiexe is a requirement that
new questions can be added at any time by the astnaitive users of the system, without
developer or DBA input - i.e. without any actuahema changes to the relational
database design. We conclude, therefore, that Wenew need aQuestion entity, with
sufficient information to dynamically display inptdrms (for example, labeling, type,

ordering, etc). While there can be many arrangesnantl subtleties to this relationship,
15

let us assume for sake of example that this is myri@many relationship, where each

guestion exists only once, but can appear (or ppear) on any number of Positions'

forms:
Position
. N\
on . ‘ ‘
QueStO 0. * 0 job_title string
label string > < open_date date
: collects asks| close_date date
type string answers for salary float
order integer
g J description string
N Y,

Figure 5: Logical data model for Many-to-many relaship

Bridging into the physical model world, this becanzethree-table relationship, as

follows:

(Position_Question\ (Question
position_id integer > question_id integer
question_id integer label string

V4 / type string
order integer

- ~ required hoolean
Position ~ ~

position_id integer
job_title string

open_date date
close_date date

salary float

description string

- y

Figure 6: Physical data model for Many-to-manytreteship
16

We can now define any number of Questions, and witich Questions appear

on the form for each PositigrSample data for these questions might be somelikizg

Table "Position":

position_id job_title open_date close_date salary description
1001 Accountant 4/1/2010 5/1/2010 50000.00 Cooks the books
1002 Janitor 6/1/2010 7/1/2010 30000.00 Cleans the loo

Table "Question":

question_id label type order
101 Name string 1

102 Birth Date date 2

103 State string 3

104 CPA Date date 4
105 Years Mopping number 5

Table "Position_Question":

position_id question_id

1001 101
1001 102
1001 103
1001 104
1002 101
1002 102
1002 103
1002 105

Thus, we have associated the first 3 questions it Ipositions, and then
associated "CPA date" only to the accountant msitand "Years Mopping" only to the

janitor position.

7 Depending on the specific business requiremetitites of the Question class might properly mtve
the association class - for example, it could lopiired to have each Question appear in a diffeyeder on
the form depending on which Position is being showe leave these details out for clarity, as ttzet ho
impact on the important concepts in this case.

17

The many-to-many relationship of questions to pms# has an interesting design
pattern when translated to the non-relational wo@ldnsider an implementation of this
logical design in another product type, the fanulfy Bigtable systems (which also
includes open source implementations such as Hjglerand HBase). In this setup, we
have more depth than a key/value paradigm, bedhesdata storage engine does more
with the data in the value itself, providing a mdmerough structure and meta-structure.
Each entity can have "column families” (of whichertn are a discrete and limited
number, established at design time), and with aroolfamily, there can be an unlimited
number of "columns” (which are effectively repegtaells within the column family).

To establish the many-to-many relationship above, need model only two
entities in this paradigm: the Question and theitlos which relate to each other by

including a column family to hold instances of tieéationship:

Position Row Column Families
Info: Question:
<position_id> Info:title Question:<question_id>

Info:open_date
Info:close_date
Info:salary

Info:description

Question Row Column Families
Info: Position:
<question_id> Info:label Position:<position_id>
Info:type
Info:order

Figure 7: Bigtable schemas for many-to-many refesimp

18

Now, any position can contain its relationship tty aaumber of questions, and
any question can contain its relationship to anyniper of positions. Because of the
repeating nature of columns within a column familie have broken down the single-
value barrier in relational database design thaief® us to use an intermediate table to
connect entities in this way.

There are, of course, ramifications of this typelesign; the same information is
represented in two different ways, which could tietioally differ. We will address this
concern below under the topics of relational intggand consistency. For the moment,
note only that we have indeed satisfied our contesign using a structure outside of

the traditional relational database design paradigm

ENTITY /ATTRIBUTE /VALUE : EXTENSIBLE APPLICATION FIELDS

While explicitly storing questions seems to be mpe way to satisfy our new
requirements, it belies the difficulty we have aduced for ourselves in another area.
Things that were formerly the province of the schetself are nowdata in the schema.
In the relational world, this puts us in a bindaeting what to do with the Answers to
these questions. We can no longer rely on the Aapti entity having strongly named
attributes for each possible question on the fam. ('birth date”, "address”, etc.). With a
relational database, we effectively have two chmioghich we will refer to as the
"unstructured" method, and the "structured” method.

In the unstructured method, we could change theliégu table to contain

arbitrary (unnamed) storage, either in a serigadividual fields (aka "buckets®)

8 We have kept both "applied date" and "source"easpnent, system-supplied fields in this design, fo
reasons that will become clear below.

19

s

Applicant
applied_date date
source string
answer_1 string
answer 2 string

string
answer_n string
\

Figure 8: Entity with “bucket” columns

Or alternately, it can be modeled with a singleifield:

Applicant

applied_date date
source string

answer _data string

- J

Figure 9: Entity with “blob” column

It is then up to the system's code to enforce rabemut putting the right answers
into the right buckets, and / or providing a megfuhinternal structure to the data in the
blob field. SQL provides no intrinsic way of quergidata in this form; for example, our

earlier query returning the job title, name, andhbdate of an applicant becomes more

20

difficult in the bucket method, requiring us to iotp a mapping between the positional
column and the question, and thus dooming us tostoget the SQL statement

dynamically for every query:

SELECT P.job_title, answer_1 as 'name’, answer_ 2 as 'birth_date’, ...
FROM
Position P
INNER JOIN Applicant A
ON A.position_id = P.position_id
WHERE
P.salary > 100000
AND A.answer_3 = 'New Jersey'
ORDER BY
A.answer_1

Further, we have effectively eliminated the benefitrelational integrity here.
There is nothing in the database design enfordiegfact that the values that appear in
the "answer_1" column are actually names, or thatgosition being applied for even
asked for the Applicant's name. We have effectivelggated the relational database to
storing flat, undifferentiated data. It is onlygsltly better, from a querying point of view,
than using the blob method (which is essentiallpossible to query, short of using
complicated string pattern matching queries agdhestext blob itself, which are almost
sure to perform miserably and be difficult to wineSQL.)

The alternative approach, which would be the moogréct” solutiof in standard
relational database design, is to structure tha @éh proper normalization, and create a

new entity that relates to Applicants in a manyte relationship, as follows:

9 We use the word “correct” in quotes here becaasshould become apparent, the strict traditicetal s
based approach of SQL and relational databasesotalways be the right solution to a problem.

21

N 4
Answer .) Question
Lvalue string /answers collects | label string
/ type string
0..* \/is provided d .
by oraer integer
\
0..%* N/ collects
answers for
1 provides 0.7 / asks
r’ _ A é .
Applicant Position
0...* 1
applied_date date applies to .is job_title string
_ y, ap&"ﬁg open_date date

close_date date

salary float
description string
\...)

Figure 10: Normalized question / answer model

Our new "Answer" table stores one record per anskered by the applicant ID
and question I, In other words, the attributes that were colunmmsour original
Applicant relation now become rows in this new tiela which represents a single
Answer by a single Applicant to a single Question.

This logical model maps directly to a physical mogeimarily by adding keys.
Incorporating the model of questions to positiaing complete picture of the physical

relational model is now:

10 This model doesn't directly depict the fact tihet Position attribute of the Applicant entity mimaply a
record in the Position_Question table with the spogtion_id and question_id, but that fact cowddiky
be encoded as a CONSTRAINT in a relational database

22

e R

Answer -
applicant_id integer Fanswers 1 |coHccts
question_id integer ~ e
value string) (Position_Question Question
N 0.% 1
0.. ‘bsyp’OV‘dCd position_id integer > question_id integer
. L collects :
question_id integer anewere label string
_J for type ;
—\ yp string
asks order integer
1 .
4 . N\
Position
1 id
provees ~ position_id integer
App”cant job_title string
0.7 ! open_date date
applicant_id integer [applies to is close_date date
. \) applied
position_id integer to by salary float
applied_date date description string
NG J

L)

Figure 11: Full physical relational model for quess and answers

This style of data design is a variant of what asnetimes referred to as a
"generic” table, or an "open schema" table. It mommon design pattern; other names
for it include "EAV ", for "Entities, Attributes, ®lues "; "object-property-value”, as used
by Object Oriented designers; "frame-slot-value" Iye Artificial Intelligence
Researchers; and the "Subject-Predicate-Objegtfesriof Resource Description Format
(RDF), which is the basis for the "Semantic Webakd&n to an additional degree of
generality, this type of relationship can indeedused to meta-model any type of data;
attributes, and the entities themselves, becomts faca single table that points to an

entity identifier (via a key) and an attribute ty@& another key).

23

The sample data from the Applicant table aboveysfamed into this model,

would look like:

Table "Applicant":

applicant_id applied_date source

30001 9/1/2009 Employee Referral
30002 10/2/2009 Recruiter
30003 11/4/2009 Employee Referral

Table "Answer":

applicant_id question_id value

30001 101 Ned Flanders
30001 102 4/5/1958

30001 103 Nevada

30001 104 recruiter

30002 101 Homer Simpson
30002 102 7/1/1962

30002 103 Texas

30002 104 employee referral
30003 101 Willie Scoggins
30003 102 1/1/1900

30003 103 California

For sparse data, this turns out to be a very spHimgent representation; each
item has some overhead, in terms of its two int&ggs, but for many attributes that is
typically a small portion of the value (8 bytes kdy, versus potentially large string
attribute values). Storing this data in traditiotedular format, even using only a single
byte to represent NULL values (which is unlikelydwd end up taking up much more
space, assuming a sparse distribution of values.

So, how do we query this data in a way reminisagnbur previous query
examples? Not easily! We have successfully modeleddata in a fully normalized
fashion ... and in so doing, we have nearly corepletrippled our ability to write queries
that work with it in a way similar to how we did foee. Even a simple tabular result

showing the name and birthday of every applicasmfNew Jersey iextremely difficult,
24

requiring an additional outer join to the answdneafor each question we want included

- here, "name", "birth date" and "state":

SELECT P.job_title, Al.value, A2.value, ...
FROM
Position P
INNER JOIN Applicant A
ON A.position_id = P.position_id
LEFT OUTER JOIN Answer Al
ON Al.applicant_id = A.applicant_id
AND Al.question_id = @name_question_id
LEFT OUTER JOIN Answer A2
ON A2.applicant_id = A.applicant_id
AND A2.question_id = @birth_date_questi on_id
LEFT OUTER JOIN Answer A3
ON A3.applicant_id = A.applicant_id
AND A3.question_id = @state_question_id
WHERE
P.salary > 100000
AND A3.value ='New Jersey'
ORDER BY
Al.value

The same complexity would continue, requiring adi@ohal self-join for each
additional attribute; large tabular results aredexad impossible as the query optimizer
collapses under the weight of massive join requests

We have hit upon a situation here where the tiadhdi relational database
architecture falls flat. So, how would we achieve this same design goal key/value
store? This is a case where the inherent desideyfalue stores actually lends itself
perfectly to our problem. Since the data storendtely only cares about keys and values,
it does not matter if we add additional propertieshe value that do not match each

other.

11 0f course, there are ways to mitigate this efiiect relational database, such as using cached or
temporary versions of the table that are constdudymamically and then can be queried normallyreghe
are also a wide range of techniques for automatiagextraction and querying of EAV-type designs.
However, all of them are complex, implementatiopesfic, and outside the realm of straightforwardLSQ

25

Using the Google App Engine data store's Python #&g2lin as an example, we
can use the "Expando"” class to easily represenbdehwhere properties are added as

they are needed. The class itself would simply bdeted as:

class Applicant(db.Expando):
position = db.ReferenceProperty(Position)

source = db.StringProperty(multiline=False, cho ices=set(["employee
referral”, "recruiter”, "advertisement"]))
applied_date = db.DateTimeProperty(auto_now_add =True)

Code to use it would then be along the lines of:

janitor = Applicant()

janitor.name = "Montgomery Burns"
janitor.years_of_mopping_experience = 2
janitor.put()

accountant = Applicant()
accountant.name = "Homer Simpson"
accountant.year_obtained_cpa = 1997
accountant.put()

The data store has no specific "schema" for thedd#ies in advance, and
whatever attributes are assigned are those thattared. Assuming we are still using a
Question table to keep track of all the questiores might want to ask, and some
relationship between the Position data and the iguedata, then we have done all we
need to do in terms of enforcing the integritylugtdata set.

How would we query and filter this, as above? Heering, an index can be built
against the data store for any query that mighexecuted, or manual filtering can be
done in the client code based on the values (on dve existence) of properties. This
process is not necessarily easier than the prooesa relational database, but it is
uniform and can be developed on the same leveihgsother query against the data

(which may actually have a beneficial effect onaddésign overall, a concept we will

26

explore in detail below). We have put a simple &mall of our worrying about how to
represent the schema of this data: we simply dBefational databases are not designed
for this kind of behavior, and make data designerg through hoops that ultimately are
not even necessary.

In fairness, let it be noted that of course, ati@tal database can always be made
to store anything a key/value store can hold, bynaey a simple two column schema
with a "key" column and a "value" column that signpblds a binary or text blob. Doing
that, however, gets few or none of the gains fremational database technology, but

incurs many of the losses of non-relational desigisch we will see in detail below.

ANALYTICAL REPORTING

Imagine now that our favorite HR manager returnghvd new request. The
"source" attribute of our Applicant entity holdssting indicating where the Applicant
heard about the opportunity at the company—for g@taman employee referral, a
recruiter, Monster.com, etc. The choices for thegdf might be given in a droplist on the
application front end, or stated as a constrainthenproperty itself (as they were in our
model above).

Our HR manager is now requesting a "recruitingaifeness" report, containing
information about the efficacy of each possiblersewf new employees, by number of

Applicants. She wants the output to be somethkeythis:

source count

advertisement 186
employee referral 552
recruiter 415

27

In SQL, this is a simple query using a "GROUP B¥use:

SELECT
source,
count(*)

FROM
Applicant
GROUP BY

source
ORDER BY
source

No sooner have we understood the problem than we balved it: this query
represents exactly the data in question, returmedistently in real time thanks to the
underlying query engine of our relational database.

In our key value store, this is no longer a sinfgjaery”, but must instead be
treated as a manually created collection operatiomwss the entire data store. Each
platform has its own specific implementation ofsthbut the overall idea is well
expressed in the "map/reduce” paradigm that origchan functional languages and was
popularized by Google [Chang et al, 2006]. In eseegou would write a function that
crawled the entire data space, accumulating theesain buckets as needed. You may
then cache the result in its own data store, alcetate it as needed.

This architecture is eminently sensible for theetymf problems that key/value
stores originated to solve, where the idea of mgtta consistent snapshot with
transactional consistency of a hugely distributedadstore is neither reasonable nor
expected. However, this is functionality we haveneoto expect in SQL, and most
relational database designs rely on the abilitgxpress this query simply and execute it

efficiently.

28

Of course, standard SQL is not itself the ultimpsmacea for all types of data
requests. Using the same example, suppose they mranager would like to see this

information broken out by year, like:

source 2008 2009 2010

advertisement 85 60 41
employee referral 168 175 209
recruiter 15 80 320

Our "SELECT / FROM / WHERE / GROUP BY" pattern aamlonger elegantly
handle this request, because it involves two legélgrouping: one by column, and the
other by row. Only in the OLAP section of the 1990L standard [SQL Standard, 1999],
which is only beginning to see use in industryhas triting, is there an operation that

can even produce data in this form:

SELECT
source,
sum([2008]) as '2008',
sum([2009]) as '2009',
sum([2010]) as '2010'

FROM
Applicant
PIVOT (count(*) FOR
DatePart(yyyy, applied_date) in ([2008], [2009], [2 010])) A
GROUP BY
source
ORDER BY

source

However, from the key/value store paradigm, thisasmore or less difficult than
the previous query: it is a simple shift in theccddtion, putting the results into a two
dimensional matrix instead of a one dimensionaltarecTransitioning to higher
dimensions, as you might in a data mining effat,@xample, is only incrementally more

effort; whereas in SQL, is not only more difficubtut completely impossible (short of

29

using temporary tables, or some other higher levellytical structures such as data
cubes, etc).

This distinction points to one of the most impottgains in using non-relational
stores, which we will see in detail below. By raging the power of the data storage
engine to having a much more basic set of primstivee reduce the tendency to see the
world in terms of the set of abilities provided BQL, and open up much wider
possibilities. Any Turing-complete language, with the facilities inherent in full-
fledged programming, can be used to generate se$oftexample, using the map/reduce

paradigm. This is a double-edged sword, as wese#l

MASSIVE MULTIPLICITY : KEYWORD SEARCH

Friday afternoon at 4:45pm, the HR manager rettwngs with one last urgent
request. "When people apply for positions, theyallguupload a resume. | want the
ability to search against the key terms in theseimes, and find applicants who might
have applied for one position but would be a gabtbf another. Can you do that?"

How should we answer this request in a relatiomghlohse? Presumably we can
parse through the resumes and pull out lists & @ktvords or phrases of interest. We
could then create a table for each resume (lealist@ "document” for generality) and
then another table that stores one row for eachdwor "term") associated with an

applicant. The physical and logical models might be

30

e

(Term W document id integer
term string
Lterm StringJ 0...* \/is included by
0...* \/ is included by 1 includes
4 ™
1 includes Document
4 D
Document document_id integer
applicant_id integer
title string title string
created_date date created_date date
file_data binary \ file_data binary/
_) 0..% \/15 attached by
0..* \/ is attached by
1 attaches
1 attaches 4
Applicant
(Applicant W
applicant_id integer
applied_date date applied_date date
source string L source string

Figure 12: Logical (left) and Physical (right) méslef term storage within documents

This design implies several constraints about thenmar in which we are
collecting and keeping terms: for example, that ovdy keep each term once per
document (implied by the Primary Key) and that ¢hisrno explicit relationship between
the same word kept in multiple different documeimther than its exact spelling. We
could of naturally modify this approach in a vayietf ways, by restricting the set of

words to only those that we are interested in,emping counts of how many times the

31

word is used, etc. However, for the simplicity bistexample, we will presume that this
level of detail is sufficient.
At this point, doing a search for all the applicawho have entered a the keyword

"CPA" in their resume looks like this:

SELECT A.*
FROM
Applicant A
INNER JOIN Document D
ON D.applicant_id = A.applicant_id
INNER JOIN Term T
ON T.document_id = D.document_id
WHERE
T.term = 'CPA'

Note that because of the join syntax here, andaittehat we have normalized the
relationships, this query will actually return omev per applicanper document—so, if
one applicant uploaded two resumes, both contaitiiegword “CPA”, then we would
get two results. It is unlikely that this is thesu#t that our HR manager is looking for, so
to fix the query to "hide" this normalization wevieadone, we might use the DISTINCT
operator to transform thbag of Applicants back to a propeset of applicants, as in
“SELECT DISTINCT A.* ...". Or, to express the quemyore directly in terms of our

intention, we might use a semijoin with the "EXISTdperator:

SELECT *
FROM
Applicant A
WHERE
EXISTS (
SELECT *
FROM
Document D
INNER JOIN Term T
ON T.document_id = D.document_id
WHERE
D.applicant_id = A.applicant_id
AND T.term = 'CPA'

32

In either case, this is not a trivial query to wricorrectly, because of the
complexity with which we have described the relaginps between applicants,
documents, and the terms in those documents. Addity, if the number of applicants is
high, we might get into situations where the perfance of this design is very
challenging; indexes to support millions of ternm&l dhousands of applicants are well
within the purview of today's commercial relatiorgdtabase systems, but millions of
users with tens of billions of terms might causeenaf a headache.

How might this scenario be more naturally modelethe non-relational world?
We turn to the Cassandra project for this exampéng column families and super-

columns (described in detail below). A possibleigie$or the applicant table might be:

Applicant Row | Column Families
Supercolumn Answers| Supercolumn Terms:

<question_id> | Answer:<question_id>| Term:<document_id>
=answer =term

This design groups all of the information about #pplicant—their answers to
guestions, as well as the keyword terms in théacaed documents—into a single entity
of the data store; however, each column family rmaydistributed separately, and the
supercolumns within the family can contain any nemdf values, each of which can be
versioned any number of times. This simple multeisional approach provides locality
of the data and high performance with regard to ghgsical storage properties, but
perhaps more importantly, it simplified the natofethe data definition by describing it

physically in much the same way you might think@liologically.

33

How would you query this data? Certainly not witetandard SQL query, which
has no way of interacting with the nested properiid the data. Instead, custom
procedural code would have to be written to feted desired records, iterate over them,
and produce the results. Is this more or lesscdiffthan the SQL queries shown above?
In the simplest real-world case of slip-shod regmients and quick turnaround time, the
answer is probably that the SQL queries are simfewrite. However, the other
properties of the data access may shift the balahtieis equation; when the task is not
to produce a quick report, but instead to manageinformation for millions of users, in
order to produce intermediate structures that ceswar search queries in fractions of a
millisecond, the prospect of writing your own aede in this manner (via, for
example, a map/reduce operation) becomes much atioaetive.

We turn next to a more formal comparison of the taadeling approaches.

34

SECTION 3: BENEFITS

It should be clear at this point that there arderaffs in the expressive power of
relational versus non-relational data stores, déipgnintimately on the problem domain
being modeled. With that in mind, the next two et present a more formal set of
dimensions which might be reasonably consideredétis” of non-relational database
modeling, and subsequently, "detriments" of noatrehal database modeling. These
include inquests into the expressive power of @& dnodeling abstractions provided by
the systems, as well as more particular concerositaitne integrity requirements and
access patterns of applications.

There are a long list of potential advantages toguson-relational databases. Of
course, not all non-relational databases are thmeeshut the following list covers areas

common to many of them.

* Semi-Structured Data

» Alternative Model Paradigms
* Multi-valued properties

* Generalized Analytics

* Version History

* Predictable Scalability

« Schema Evolution

We will explore each of these areas in turn.

35

SEMI-STRUCTURED DATA

We saw above the value of the "Expando” concemh filze Google App Engine
data store Python API - a structure where eaclhyetdn have any number of properties
defined at run-time. This approach is clearly hadlph domains where the problem is
itself amenable to expansion or change over tirseM@re the Questions related to our
Positions). We can begin simply, and alter the idetsf our problem as we go with
minimal administrative burden. This approach hagsimun common with the imputed
typing systems of scripting languages like Pythehich, while often less efficient than
strongly typed languages like C and Java, usuatlyenthan make up for this deficiency
by giving programmers improved usability; they cgat started quickly and add structure
and overhead only as needed.

But there is another, more important aspect totdnsglency towards storing non-
structured, or semi-structured, data: the ideaytbat understanding of a problem, and its
data, mightegitimately emerge over time, and be entirely data-drivenr dfte fact. As
one observer put it:

RDBMSs are designed to model very highly and safljistructured data which
has been modeled with mathematical precision - a@ladedesigns that do not meet
these criteria, such as data designed for diretiamuconsumption, lose the
advantages of the relational model, and resulborgr maintainability than with
less stringent models. [Barreto, 2009]

This kind of emergent behavior is atypical whenlidgawith the programming
problems of the past 40 years, such as accountisigras, desktop word processing
software, etc. However, many of today's interesfomgblems involve unpredictable

behavior and inputs from extremely large populatjononsider web search, social

36

network graphs, large scale purchasing habits,letthese "messy" arenas, the impulse
to exactly model and define all the possible strteg in the data in advance is exactly the
wrong approach. Relational data design tends to poogrammers into "structure first"
proponents, but in many cases, the rest of thedan@rtluding the users we are writing
programs for) are thinking "data first".

There is a negative side to this tendency as welipurse; we will return to that

in the next section.

ALTERNATIVE MODEL PARADIGMS

Modeling data in terms of relations, tuples andlaites—or equivalently, tables,
rows and columns—is but one conceptual approacererare entirely different ways of
considering, planning, and designing a data mod@leése include hierarchical trees,
arbitrary graphs, structured objects, cube or stdmema analytical approaches, tuple
spaces, and even undifferentiated (emergent) ssoygmoving into the realm of semi-
structured non-relational data, we gain the polisilof accessing our data along these
lines instead of simply in relational database term

For example, there is an entire class of non-eiali database systems that we
have not talked about in this paper, but that desemention: graph-oriented databases,
such as Neo4j. This paradigm attempts to map pensistorage capabilities directly onto
the graph model of computation: sets of nodes adedeby sets of edges. The database
engine then innately provides many algorithmic eexw that one would expect on graph
representations: establishing spanning trees,rindhortest path, depth and breadth-first
search, etc.

You could certainly model a graph in any relatiodatabase; in fact, you need

only two relations:
37

4)
Edge

from_node node

to_node node
VT4

1 1

Node

Lproperties string J

Figure 13: Relational model of a graph

o (

The issue with taking this approach, however, dredadvantage of using a full-
fledged graph-oriented database, is that the b@sécations one might want to use on
graph data are entirely different from those avdélan a SQL paradigm. It would take a
recursively defined SQL query to find, for exammepath between two arbitrary nodes.
A native graph database, on the other hand, wiéhaimitives for such things built into
its query language, coupled with efficient implenations of these operations in terms of
indices, disk i/o, etc.

Do other non-relational databases (not specificallyared towards graph
problems) achieve this same benefit? To some detireg do, insofar as they imply a
step away from the limitations of SQL. When intéi@ts with a data store imply a

map/reduce query architecture, the process of marstg a graph in memory and

38

working with it becomes just another possibilitytire design space. (That said, for large
graphs, there may be cases where a map/reducagmaradot the most efficient way to
interact with the graph.)

Object databases are another paradigm that havearetus times, appeared
poised to challenge the supremacy of the relatidatdbase. An example of a current
contender in this space is Persevere (http://wwwsyperg/), which is an object store for
JSON (JavaScript Object Notation) data. Advantag@sed in this space include a
consistent execution model between the storagenengind the client platform
(JavaScript, in this case), and the ability tovelyi store objects without any translation
layer.

Here again, the general principle is that by movaway from the strictly
modeled structure of SQL, we untie the hands oklbpers to model data in terms they
may be more familiar with, or that may be more agnde to solving the problem at

hand. This is very attractive to many developers:

The main reason why relational databases are sotie# and why programmers
hate them so much is that they are data-centragrBmmers tend to see data as
secondary or peripheral to code. This programmes isi the main fuel in the
guest for something "better” than an RDBMS, resgltn reinventing wheels that
were partially or completely rejected in the 197€sch as the hierarchical
model). [Bain, 2009]

MULTI -VALUED PROPERTIES

Even with the bounds of the more traditional reliaél approach, there are ways
in which the semi-structured approach of non-retatl databases can give us a helping
hand in conceptual data design. One of these wdyyof multi-value properties—that is,
attributes that can simultaneously take on more tre value.

39

A credo of relational database design is that fyr@ven tuple in a relation, there
is only one value for any given attribute; stormgltiple values in the same attribute for
the same tuple is considered very bad practice,immit supported by standard SQL.
Generally, cases where one might be tempted tee staultiple values in the same
attribute indicate that the design needs furthemadization.

As an example, considerdser relation, with an attributemail. Since people
typically have more than one email address, a s€in(iplit wrong, at least for relational
database design) decision might be to store thd endresses as a comma-delimited list

within the "emails" attribute:

~)
User
user _id integer
name string
emails string
N\ J

Figure 14: User / email denormalized model

Example data in the table might include:

user_id name emails

123 Homer Simpson homer@simspon.com, homer. simpson@springfieldpower.org

The problems with this are myriad - for exampleye membership tests like
SELECT * FROM User WHERE emails = 'homer@simpson.co m'
will fail if there are more than one email addréasshe list, because that is no

longer the value of the attribute; a more genest tising wildcards such as:

40

SELECT * FROM User WHERE emails LIKE '‘%homer@simpso n.com%'

will succeed, but raises serious performance isgudisat it defeats the use of indexes
and causes the database engine to do (at besd)-tinee text pattern searches against
every value in the table. Worse, it may actuallpatt correctness if entries in the list can
be proper substrings of each other (as in thédat, cart, art”).

The proper way to design for this situation, irekational model, is to normalize

the email addresses into their own table, withraifm key relationship to the user table,

like so:
(" _) 4)
Email User
1. 1
user_id integer user _id integer
has
email string belongs to ’ name string
_ Y, . J

Figure 15: Normalized model of user with emails

This is the standard Many-to-one design patterrsawe early in the introductory
examples (in that case, between Applicants andiBos). The same data would thus be

rendered in this model as follows:

user_id name

123 Homer Simpson

user_id emall

123 homer@simspon.com
123 homer.simpson@springfieldnuclear.org

41

This is a design strategy that can is frequentlgliag to many situations in
standard relational database design, even reclysifeyou sense a one-to-many
relationship in an attribute, break it out into tretations with a foreign key.

The trouble with this pattern, however, is thadtitl does not elegantly serve all
the possible use cases of such data, especialjuetions with a low cardinality; either it
is overkill, or it is a clumsy way to store data.the above example, there are a very

small set of use cases that we might typically @b @mail addresses, including:

* Return the user, along with their one “"primary" énwddress, for normal
operations involving sending an email to the user.

* Return the user with a list of all their email aglsbes, for showing on a "profile”
screen, for example.

* Find which user (if any) has a given email address.

The first situation requires an additional attrdatong the lines ak_primary on
the email table, not to mention logic to ensuret thi@ly one email tuple per user is
marked as primary (which cannot be done nativelw irelational database, because a
UNIQUE constraint on thauser_id and theis primary field would only allow one
primary and one non-primary email address ymer_id). Alternately, aprimary_email
field can be kept on the User table, acting as cheaf which email address is the
primary one; this too requires coordination by ctalensure that this field actually exists
in the User_Email table, etc.

To use standard SQL to return a single tuple coimgithe user and all of their
email addresses, comma delimited like our orig{hatong") design concept, is actually

quite difficult under this two-table structure. Fetample, if our desired output is:

42

user_id name email

123 Homer Simpson homer@simspon.com, homer.s impson@springfieldpower.org

standard SQL has no way of rendering this outphichvis surprising considering how
common it is. The only mechanisms would be constrgantermediate temporary tables
of the information, looping through records of jba relation and outputting one tuple
peruser_id with the concatenation of email addresses astahide.

Under key/value stores, we have a different paradegtirely for this problem,
and one which much more closely matches the redlwgses of such data. We can
simply model the email attribute as a substructarést of emails within the attribute.

The logical model is as simple as:

4)
User
name string
emails string list
N

Figure 16: Non-relational model of user and emails

For example, Google App Engine has a "List" typs ttan store exactly this type

of information as an attribute:

class User(db.Model):
name = db.StringProperty()
emails = db.StringListProperty()

(As before, we have removed the "id" attributethes is handled by the "key" of

the entity instances.)
43

The query system then has the ability to not oelyinn the contained lists as

structured data, but also to do membership quesied) as:

results = db.GqlQuery("SELECT * FROM User WHERE ema il = 'homer@simpson.com™)

This will return user 123, because it returns arsgances where any of the values
in the list match the query.

Since order is preserved, the semantics of "prithaeysus "additional” can be
encoded into the order of items, so no additiottaibate is needed for this purpose; we
can always get the primary email by saying somegthke "results.emails[0]".

In effect, we have expressed our actual data reopgnts in a much more succinct
and powerful way using this notation, without angticeable loss in precision,

abstraction, or expressive power.

GENERALIZED ANALYTICS

On the subject of expressive power, consider atf@n'GROUP BY" example
above. Our use of SQL in this case was standard@aightforward; “GROUP BY” is a
SQL primitive, and allows one level of aggregatitwy, one or more attributes. If the
analytics you are performing fall into this categat is difficult to argue that there is a
more succinct way to express it.

However, as explained above, if the nature of tmyais falls outside of SQL’s
standard set of operations, it can be extremelficdif to produce results with the
operational silo of SQL queries. Worse, this hasmicious effect on the mindset of data

developers, sometimes called “SQL Myopia”: if yant do it in SQL, you can’'t do&

12 Note that this is not a fault of the relationaldabitself—only of SQL, which is ultimately just en
possible declarative grammar for interacting wélational structures.

44

This is unfortunate, because there are many iritegeand useful modes of interacting
with data sets that are outside of this paradigoorsider matrix transformations, data
mining, clustering, Bayesian filtering, probabilapalysis, etc.

Additionally, besides simply lacking Turing-commaess’, SQL has a long list
of faults that non-SQL developers regularly presdritese include a verbose, non-
customizable syntax; inability to reduce nestedstmmtions to recursive calls, or
generally work with graphs, trees, or nested stinest inconsistency in specific
implementation between vendors, despite standdiolizaand so forth. It is no wonder
that the moniker for the current non-relationalatbaise movement is converging on the
tag “NOSQL": it is a limited, inelegant language.

Non-relational databases skirt the entire issueeluiring most interactions with
the data store to be written in other conventiolziguages. This opens up the
possibilities of what can be done with data (thoitghlso has negative implications in

terms of ease of use, as we will explore below).

VERSION HISTORY

Part of the design of many (but not all) non-relaéil databases is the explicit
inclusion of version history in the storage unitdaita. For example, when you store the
value 123 in an attribute, and later change ithi talue 234, your data store actually
now contains both values, each with a timestampeator clock version stamp. This
approach has many benefits from an efficiency pofntiew: primary interaction with
the database disks is always in write-forward maale] multi-version concurrency

control can be easily modeled with this structure.

13 For the record, this lack of Turing-completenesiyi design, so that all queries would be ableioim
bounded time; never mind that every major commeévaador has extended SQL with operations that do
make it Turing complete, albeit still awkward.

45

From a modeling point of view, however, there atfeeo distinct advantages to
this format. One of them is the ability to intemadly keep, and interact with, older
versions of data in a structured way. An examplehis, which almost certainly uses the
versioned characteristics of Google's Bigtable astiucture, is Google Docs: any
document can be instantly viewed in, or revertedt$ostate at any point in its history — a
granular, infinite "undo”.

Implementing this kind of revision ability in ty@t relational database
applications is prohibitive both from a programmicmgmplexity standpoint (this ability
must be consciously designed in to each entity mhight need it) as well as from a
performance standpoirit

As an example of this difficulty, consider the opis we would have if we wanted
to be able to version the data in our example Appli table above—for example, if
government non-discrimination regulations requicesl HR department to show a full
audit trail on any changes made to applicant déta. basic (original) logical design of

the Applicant relation:

/_ -
Applicant
applicant_id integer
position_id integer
source string

applied_date date
name string
birth_date date

_ J

Figure 17: Applicant entity

14 Consider how many traditional relational datatiagg@emented products you know of that offer any
kind of Undo functionality.

46

We have two main options when keeping a historyiriarmation in this table.
On the one hand, we can keep a full additional cafpgvery row whenever it changes.
This can be done in place, by adding an additicoaiponent to the primary key which

is a timestamp or version number:

’/'
Applicant

timestamp date
applicant_id integer
position_id integer
source string
applied_date date
name string
birth_date date

L)

Figure 18: Applicant history table with timestamp

This is problematic in that all application codattinteracts with this entity needs
to know about the versioning scheme; it also cocapdis the indexing of the entities,
because relational database storage with a comeppsinary key including a date is
significantly less optimized than for a single oee key.

Alternately, the entire-row history method can @&l in a secondary table which

only keeps historical records, much like a log:

47

@)
Applicant_History

timestamp date
applicant_id integer
position_id integer

source string
applied_date date
name string
birth_date date

L)

(r -
Applicant
applicant_id integer
position_id integer
0. L source string
is a is copied applied _date date
copy of nto name string
birth_date date
\. J

Figure 19: Historical versions implemented as atitamhal table

This is less obtrusive on the application (whicledenot even be aware of its

existence, especially if it is produce via a dasablavel procedure or trigger), and has the

benefit that it can be populated asynchronously.

However, both of these cases require O(s*n) storabere s is the row size and n

is the number of updates. For large row sizes appmoach can be prohibitive.

The other mechanism for doing this is to keep wdma@ounts to an Entity /
Attribute / Value table for the historical changagable where only the changed value is
kept. This is easier to do in situations wheretttide design itself is already in the EAV

paradigm, but can still be done dynamically (if eficiently) by using the string name

of the updated attribute:

48

(")
Applicant_History

timestamp date
applicant_id integer
attribute string

value string

g J

Figure 20: Historical version using an entity/4iirie/value model.

For sparsely updated tables, this approach does §aace over the entire-row
versions, but it suffers from the drawback that asg of this data via interactive SQL
gueries is nearly impossible, owing to the same 8Qmuplexities we saw above when
examining use of the EAV model—compounded now bg #ddition of a time
component.

Overall, the non-relational database stores thap@t column-based version
history have a huge advantage in any situationgevtiee application might need this

level of historical data snapshots.

PREDICTABLE SCALABILITY

While the focus of this report is not on the impéartation-specific aspects of
scalability, it is important to note that one oétmost important benefits of this class of
data store—and in fact, the justification for thexistence in the first place—is their
ability to scale to larger, more parallel instatias than relational databases can.

This definitively impacts the modeling concepts moed by the systems,

because it elevates scalability concerns to a ¢iets modeling directive—part of the

49

logical and conceptual modeling process itself. hRatthan designing an elegant
relational model and only later considering howmight reasonably be "sharded" or
replicated in such a way as to provide high avditgbin various failure scenarios
(typically accompanied by great cost, in commercaigiational database products),
instead the bedrock of the logical design asks: bamwwe conceive of this data in such a
way that it is scalable by its definition?

As an example, consider the mechanism for estabgjshihe locality of
transactions in Bigtable and its ilk (including tli&oogle App Engine data store).
Obviously, when involving multiple entities in afrsaction on a distributed data store, it
is desirable to restrict the number of nodes whtuadly must participate in the
transaction. (While protocols do of course exist flistributed transactions, the
performance of these protocols suffer immenseljhasize of machine cluster increases,
because the risk of a node failure, and thus aournen the distributed transaction,
increases.) It is therefore most beneficial to teuplated entities tightly, and unrelated
entities loosely, so that the most common entitegarticipate in a transaction would be
those that are already tightly coupled. In a retal database, you might use foreign key
relationships to indicate related entities, but tiedationship carries no additional
information that might indicate "these two things &kely to participate in transactions
together".

By contract, in Bigtable, this is enabled by allogientities to indicate an
"ancestor" relation chain, of any depth. That idjtg A can declare entity B its "parent”,
and henceforth, the data store organizes the piys®presentation of these entities on
one (or a small number of) physical machines, abttiey can easily participate in shared
transactions. This is a natural design inclinatiomt, one that is not easily expressed in

the world of relational databases (you could celyaprovide self-relationships on

50

entities but since SQL does not readily expressirsdee relationships, that is only
beneficial in cases where the self-relationshia key part of the data design itself, with
business import.)

Many commercial relational database vendors mageldim that their solutions
are highly scalable. This is true, but there are taveats. First, of course, is cost:
sharded, replicated instances of Oracle or DB2hatea cheap commodity, and the cost
scales with the load. Second, however, and lesmobyis the predictability factor. This
is highly touted by systems such as Project Voldémdich point out that with a simple
data model, as in many non-relational databasésymip can you scale more easily, but
you can scale morpredictably: the requirements to support additional operations
terms of CPU and memory is known fairly exactly,lsad planning can be an exact
science. Compare this with SQL / relational databasaling, which is highly
unpredictable due to the complex nature of the R[3BMgine. To wit:

Voldemort queries have known performance, sovery easy to predict the load
a new feature will generate by just counting thenbar of requests. This is
always a challenge with SQL.: poorly designed SQé&rms may produce
thousands of times more load. Compounding thislprmpdistinguishing the bad
gueries from the good requires knowing both thexstructure and the data on
which it will run—neither of which is present in yocode—so it easy for an
efficiency to slip past even a diligent review duydon’t perform real tests on real
data for each modification to see what query pldhbe generated. [Kreps, 2009]

There are, naturally, other criteria that are imedl in the quest for performance
and scalability, including topics like low leveltdastorage (b-tree-like storage formats,
disk access patterns, solid state storage, ett)esswith the raw networking of systems
and their communications overhead; data reliabibiyth considered for single-node and
multi-node systems, etc. Some issues in this amdhbe touched on below in the Survey

section with regard to individual implementations.

51

SCHEMA EVOLUTION

In addition to the static existence of a databaseersa, it is also important to
consider what happens over time as an applicativeesls or requirements change. Non-
relational databases have a distinct advantagdisnréalm, because they offer more
options for how the version update should proc&th[iss, 2009].

To be sure, relational databases have mechanisrharfidling ongoing updates to
data schema; indeed, one of the strengths of faéomal model is that the scherma
data: databases keep system tables which defimenscmetadata, which are handled by
the exact same database primitives as user-spaes.t@his generality has advantages in
terms of manageability, but it also provides a mla@straction that vendors can use to
provide valuable schema update facilities. Indessmercial RDMBS products have
applied a great deal of engineering resources ¢o pitoblem, and have developed
sophisticated mechanisms that allow production ldetes to ALTER their schema
without downtime in most scenariésHowever, there are two issues with the relational
database approach to this.

First, relational database schemas exist in ongy siate at any given time. This
means that if the specific form of an attributeraes, it must change immediately for all
records, even in cases where the new form of théwae would rightfully require
processing that the database cannot do (for examppdication-specific business logic).
It also implies that if there is a high-volume ugjasuch as one that might need to write
many gigabytes of changed data back to disk, th&8M® is obligated to do this

operation atomically and in real-time (because DUpHates are transactional); regardless

15 Non-commercial databases such as MySQL also haehamisms such as this, but as of this writing, in
general their methods are much less sophisticaftah requiring downtime to do even simple operatio
such as rebuild indices, etc. See [Taylor, 2000kf@mples.

52

of how efficiently implemented it is, this type operation cannot be made seamless in a
highly transactional production environment.

Second, the release of relational database schévaages typically requires
precise coordination with application-layer codes tode version must exactly match the
data version. In any highly available applicatidtinere is a high likelihood that this
implies downtimés, or at least advanced operational coordination thiees a great deal
of precision and energy.

Non-relational databases, by comparison, can useryadifferent approach for
schema versioning. Because the schema (in many)caseaot enforced at the data
engine level, it is up to the application to enéofend migrate) the schema. Therefore, a
schema change can be gradually introduced by ¢@deihderstands how to interact with
both the N-1 version and the N version, and leaaeh entity updated as it is touched.
“Gardener” processes can then periodically swesguth the data store, updating nodes
an a lower-priority process.

Naturally, this approach produces more complex ¢odlee short term, especially
if the schema of the data is relied upon by anadyt{map/reduce) jobs. But in many
cases, the knowledge that no downtime will be meguduring a schema evolution is
worth the additional complexity. In fact, this appch might be seen to encourage a more
agile development methodology, because each chamgke internal schema of the
application’s data is bundled with the update te todebase, and can be collectively

versioned and managed accordingly.

16 The exception to this is that, thanks to the retetl model’'s implicit lack of attribute order, tieeare
situations in which new attributes can be addeditisdyuaranteed that no application code woulehev
know of the existence of the new attributes, lehalbe affected by them. This is a case where the
relational model has the upper hand; however, tsechis not a comprehensive solution for every
situation, the end result is that, for safety, mekitional database schema updates are treatimhasime
events.

53

SECTION 4: DETRIMENTS

There are a few new ideas in storage systems tfagse but many of them are
bad ideas, and many things that were good in oglatidatabases have been lost.

- Jay Kreps, Project Voldemort Author

Having explored the conceptual gains we get fromguson-relational models of
data design, we now turn out attention to the dadide: the benefits of relational
databases that we lose when moving to their natioelal cousins.

We noted above that since any arbitrary computatim be layered on top of
non-relational data stores, we can potentially eteuhny of the behaviors of a relational
database in application code. This is certainlye tribbut the statement belies a
misunderstanding about the true complexity, andiejabf the services built into today's
relational databases. This section explores thosasathat are a) not currently well
supported at the data level, and b) would be nieratrto replicate in application code.
These include:

» Ease of expression - writing queries is fast arsyeassuming those requirements
are within the purview of what SQL can do natively.

» Concurrency and Transactions - ACID properties

* Eventual Consistency

* Normalized Updates and relational integrity

» Standardization

* Access Control

54

EASE OF EXPRESSION

As we saw above, standard SQL is not a Turing-cetaplanguage; there are
many concepts that cannot be expressed eloquenmtlgt all. It is also a somewhat
antiquated language, lacking the modern nicetiesbgéct-orientation, robust debugger
support, etc.

Separate from that list of complaints, howevers iimportant to note that for the
things it can do well, SQL is an extremely conciklarative language; it builds a
consistent, useful abstraction framework on toglath storage in the relational model,
and allows implementations to optimize access &data within the bounds given by
that abstraction. This has significant benefitéeirms of the ease with which developers
can do common (and many uncommon) tasks.

For one thing, it is effectively impossible to halesv-level bugs in SQL code.
That is not to say that there are not high levegsbdan incorrect join, a wrong
assumption about a data model’s properties, ettitBsiimpossible to have an error in
the JOIN operator or the sorting algorithm, becadbese are system-standard
components that are accessed only declarativelyw&seely, when it is up to the
programmer to correctly (and efficiently!) implenteadl of these operations each time
they are needed, that opens the door to a huge afggoblems that simply do not exist
when working with relational databases. It is netessary to test whether the math
performed by the aggregation engine using a GROYRtBtement is correct; it is.

Non-relational stores generally allow queries agfaomly the primary key of the
store, possibly with one additional layer of filteg via index to limit results to only those
that match a simple set of filters (i.e., WHEREuskas). This limitation is acceptable in

many cases, but it is important to note what atarakeparture from SQL it really is;

55

SQL allows an arbitrary complexity of query syntaand relational databases
management systems typically have an incredibly ptex layer for processing and
planning the execution of these (potentially complgueries. Nested queries, complex
table joins, aggregation and pivoting, projectioradl-ean be described in SQL, and a
good query processing system will quickly craftrertiely efficient mechanisms for
answering these queries. For SQL-friendly datasspatterns, a good SQL programmer
can create data access and manipulation code gterfthan in any other language,
because the set-based operations are logical, ,ck@h declarative. That doesn'’t
guarantee that these patterns will be the mostpégforming, but it's likely they will be
at least competitive, because they implicitly takiwantage of all the engineering that has
been done within the database engine, which oftesludes extreme but subtle
optimizations that would be very difficult to regdite quickly.

Of course, as we showed in the earlier exampleslving analytic workloads,
there is also the opposite effect, summed up bylmase "If the only tool you have is a
hammer, then every problem looks like a nail." ¢y analyses are limited to what can
comfortably and easily be expressed in SQL, thera wide range of possible abilities

that you are overlooking.

UNDERSTANDING YOUR DATA

Above, we touted semi-structured data as a bengiiton-relational databases:
get started quickly, don't spend time creating @late relational schemas. This approach
appears to be heavily favored by some of the venatio offer non-relational solutions.
In fact, much of the language is distinctly hypdidooffering to "eliminate the
administrative burden of data modeling" [Amazon.¢c@®09]. While few will argue that

modeling complex data is always fun, reducing amo'administrative burden” overlooks
56

the essential qualities of data modeling as a dagrie understanding the related nature
of data in any domain.

Any serious system design effort that deals wittsigéent data must take careful
consideration of what theature of that data is. What are the entities? What hee t
attributes and relationships? Logical data modefingJML or otherwise) can often be a
very helpful step in understanding the needs oliders and possible overarching system
organizational patterns.

At a more tactical level, there are also some aidwms to giving constrained
schemas to your data. Having no schema also meamsatection against mistakes -
misspellings, for example:

In SimpleDB, you are working without the safety nét predefined schema, and
the service will not alert you if you make a mistakVithout a safety net, it could
prove to be very painful if you fall. [Murta 2008]

To be fair, few of the solutions in the non-relaab space claim that their
approach should be jumped into with no forethoughtfact, most of them assume a
significantly advanced developer skill set, inchglithe ability to write map/reduce
operations, sometimes in new and uncommon fundtianguages such as Erlang. This
is part of the explicit trade-off of these systertitee database engine gives you more

control and less of a safety net, in exchangedoaaced abilities to scale and perform.

CONCURRENCY AND TRANSACTIONS

Any multi-user data storage engine must deal wsdueés of concurrency: what
happens when two users attempt to change the salue at the same time? The phrase
"same time" here may be misleading, in that a singkant in time is not implied; any

overlapping spans of time have the capability toseaconcurrency contention; user A
57

begins a "read / modification" cycle taking somarspf time, and partway through that
span of time, user B begins a conflicting "readddification” cycle. The goal of any
such action, from the point of view of the databsygstem, is to make the entire sequence
"serializable"—that is, identical to what it woulthve been had the transactions been
placed end-to-end, with no overlapping time spame more transparently this can be
done, the better the throughput of the applicatwafi be: time spent waiting for
concurrent writes to complete amounts to additidet@incy in the overall performance of
the application.

This may seem to be an esoteric subject, in theling and concurrency on
modern machines might imply extremely fine intesvillat would never in practice be
violated. But, as Amazon.com’s Werner Vogels says:

“ ... when a system processes trillions and trilliohsequests, events that
normally have a low probability of occurrence aosvrguaranteed to happen and
need to be accounted for up front in the designaokitecture of the system."
[Vogels, 2008]

Relational databases traditionally use a mechanksrown as locking, or
"pessimistic" concurrency control; a transactiofl vdentify the resources it intends to
change, and protect these resources with a lockvkach there may be various types,
depending on the specifics of the operation). Othamsactions wishing to update the
same resource must wait for the lock to be releaBadgticipants wait their turn for
exclusive access to the data, and then commit rifaeguthey are not involved in a
deadlock, where two separate transactions attempttementally incorporate resources
already held by the other—a situation which musségarately recognized and resolved

by the storage engine itself).

58

Locking is often the most high-performing approablecause while there is
overhead to the locking mechanism itself, it iswmighed by the alternative of
transactions failing repeatedly due to high corengy. Locking does suffer from two
problems that are critical from the perspectivenoh-relational database management
systems, however: first, they impose overhead, Wwisdtself anathema to the project of
these lean databases; the credo of these systetypidally "store my data with the
minimum amount of overhead, and [I'll worry aboutemt¥hing else”. From that
perspective, even the modest overhead of a lockiaghanism might be seen as too
onerous. More important, though, is that lockingiisch more difficult to do correctly if
the participants in the transaction are distributguotocols do exist that can provably
establish and release locks correctly in a distethisystem [Bernstein, 1981], but they
are a) slow, and b) even slower in the presengmsdible node failures. For this reason,
locking is not used by any of the distributed netational database systems we survey in
this paper, and many architects even shy away fpoaven distributed transaction
techniques such as Paxos and 2PC because of thgility and poor performance
characteristics [Helland, 2007].

As an alternative, another form of concurrency anis typically used in non-
relational databases: Optimistic Concurrency, ésown as MVCC (Multi-Version
Concurrency Control). This mechanism relies on stamps (presupposing a shared
clock) or Vector Clocks, as described in [Lamp&@78], to determine the modification
dates of transactions. In a nutshell, when trammaet begins, it reads the timestamps of
the entity or entities it wishes to modify. It thedpes its computations, and prepares its
write. Just before writing, it checks the timestaofiphe values again and looks to see if a
conflicting transaction (transaction B) has upddtexivalues. If so, the write would be in

conflict, and its changes are rolled back and ftcestart again from scratch.

59

Optimistic Concurrency has several properties thake it an ideal choice for
large scale distributed database implementationgpposition to locking mechanisms,
reads are never blocked, which can be importatiteifaccess pattern of the application
calls for large amounts of reads (as many quenethé map/reduce paradigm do).
MVCC is very good at achieving true "snapshot" asioin, because a query can carry
with it a timestamp that is used to filter any gnthe query touches; this is true not only
in short terms "near" queries, but also equallyeai¥e in reconstructing historical
snapshots. Other methods of concurrency controh as locking, typically impose very
high performance costs for doing this.

Using Optimistic Concurrency, however, may introgluadditional layers of
complexity to the program code, which would bergliehandled in relational databases.
When one thread is attempting to modify data iraagaction, any concurrent attempts to
update the same data will either be forced to r@thich might be built in to the database
engine, or else must be implemented by the appitatievelopers) or else fail
completely; the application can attempt a writeimgperhaps up to a preset number of
retries before reporting failure, or alternatelyngssome kind of back-off scheme.

The result of this restriction is that in most nefational database systems,
explicit (multi-step) transaction either do notsxat all, or have various limits placed on
what they can do. As an example, Google App EnDiai&a Store can do transactions, but
not arbitrary transactions: entities must be deddo be part of the same "entity group”
at design time, which is a signal to the data sémigine to store the entities in a way that
supports transactions, which presumably says sangeétibout the particular disk storage
and locality of the data within the storage engilusters.

This is not entirely a bad property, however; itilcbbe argued that a relational

database's ability to silently handle such situmticauses applications to be designed

60

with "bottlenecks" that do not become obvious ustith time as transactional throughput
increases to high levels, at which point thereasimple way to re-architect the solution
to avoid these bottlenecks. If instead, the platfatself required data designers to
carefully consider which elements might be the sewf high contention, and explicitly
design around this fact, then the addition of gneldad would be less likely to throttle
the performance of the application. In fact, thi®rpise—that once you design an
application, you will never need to worry aboutlsgait—is the underlying premise of
the marketability of cloud computing solutions sashAmazon SimpleDB, Google App
Engine, etc. They are able to make this promisepart, because of simple design
restrictions such as this one.

In the simplest implementation of optimistic cormemcy, there is one caveat. If
the model is to a) get a timestamp, b) prepareifftates, c) check that the timestamp is
unmodified, and d) write the updates - if stepsid d are not done atomically, there is a
chance—albeit slight—that consistency is actualigkbn, because another transaction
could theoretically write to the database in betwsteps ¢ and d. Thus, unless you are
able to enforce the atomicity of those two operaifvia a lock, a token, etc.) then there
is always the possibility of inconsistent data. Fwme applications, this is not
problematic; however, for applications where thecsss of the software relies on
ultimate, inviolate consistency of the databasegs i not an option. We next turn to a

more complete investigation of the consistency gutaes of non-relational databases.

CONSISTENCY

Consistency is the notion (which is often takengmnted in traditional relational
database systems) that logically, when a clierst data storage system makes a write to

that system, any subsequent read (by that clieothars) will get the latest version of
61

that data that was written. At a larger scale tinaividual data items, this property states
that it should always be safe for clients to asdemhy discrete pieces of data they get
atomically and have those data items agree in tefntise picture of the overall system.
Consistency is obviously closely intertwined withet concept of transactionality:
concurrent systems require transactional guaranfeedeast) in order to maintain
consistency.

The trouble with consistency begins when we enter realm of distributed
systems. In [Gilbert, 2002], Brewer’s “CAP Theorem‘explored, namely: a distributed
system cannot simultaneously support all three dsioes of:consistency; availability
(i.e. for any given response, there is a bounded hapefully low, latency for the request
to be answered); argartition tolerance (the notion that is some portion of the computing
resources of the cluster are unavailable, the ¢iparaan still complete). This theorem
has been proven in the context of distributed systeodeling.

Distributed systems (of the type explored in tleipart, at least) assume partition
tolerance; therefore, they must make a choice lmtweonsistency and availability.
However, few (if any) systems would intentionalklystn in the possibility of permanent
inconsistency (otherwise known as corruption).

Instead, some of the models of non-relational detab use a technique known as
"Eventual Consistency" [Vogels, 2008]. The conaiges not arise frequently on a single
disk system, where typically either your data isgstent, or it is not. Instead, the
concept usually applies to cases where a distidbrépresentation of the data is kept—
for example, across multiple servers in a clustére transaction protocol does not
guarantee that reads and writes of all conceivabtiies in the database will always be

instantaneously consistent. Instead, a weakenedugfe is made: in the case of any sort

62

of failure or latency issues, it is possible thaititees may appear temporarily
inconsistent, but that they will eventually be madasistent.

While there are certainly areas where eventual istarey can work, there are
also cases where it could cause significant prokle@utside of even the financial
industries, where the potential problems are olsji@onsider any situation where user
input is cumulative: that is, user C’s update dejgeon user B’s update, which in turn
depends on user A’s update. If B is temporarily kiray from an outdated version of A’s
information, and makes a change which C then attthere are any number of scenarios
where the important consistency properties of thi&ree system could be compromised.
As such, it is important to carefully consider grart of a model that may run into this
type of issue with consistency guarantees.

On the other hand, it is often pointed out thatnéwal consistency is not a foreign
pattern to most people; for example, purchases @edit card are not typically instantly
reflected in the balance, but often take minutesyré, or days to appear. We will

examine other factors involved in considering emahtonsistency below.

RELATIONAL INTEGRITY

Another issue where we lose confidence when motang non-relational data
store is in relational integrity; specifically, ttadility to enforce, at the database level,
that references between entity instances actuelbr to real instances of the referenced
entity. To return to our running example, in a tielaal database, if we define a foreign
key between the Applicant and Position, we canure ¢hat the reference is to a real
Position that exists; the RDBMS will prevent usnfradeleting a referenced Position

without first deleting (or reassigning) all of tA@plicants that point to it (or alternately,

63

if specified, to cascade the delete to relatedties}i Any attempt to do otherwise will
result in an error, and potentially a rolled ba@nsaction.

Can a non-relational database guarantee the sarsk dé protection against
integrity problems? Generally speaking, no:

For constraints to be applied, the tables mustieesn a single database server,
precluding horizontal scaling as transaction rgtesv. [...] Schemas that can
scale to very high transaction volumes will plagedtionally distinct data on
different database servers. This requires moving danstraints out of the
database and into the application. [Pritchett, 2008

First of all, if the consistency models (as mentdmabove) are lax, then the
answer is most certainly no; operations could beed@ferring to entities which have
been deleted in one client’s view but not another.

But even assuming a stronger consistency modelyelational databases have a
significant amount of work to do if they want toplieate the same level of integrity
guarantee that is provided by a relational databBRstational database architectures
provide a layer through which all queries are pas$eat enforces relational integrity
guarantees; this would be extremely difficult to idoa distributed environment, and
would hamper the system’s throughput. Overall, deelarative constraint language of
relational databases more reliably protects agamegrity problems than application-
level validation, which is subject to coding prabkg consistency errors, etc..

In place of proper relational integrity constrajntsost non-relational databases
offer unenforced references: an entity whose kewsed as a reference property in
another entity can still be deleted, and it is gisvap to the application code to check the
existence of a referred-to key before proceedirgs S the strategy used, for example,

by the Google App Engine Data Store.

64

Does this matter? That depends greatly on theofetbte system architecture. In
this author’s experience, it is rare to see cade=a@vproduction code is written in such a
way as to depend directly on the referential intggronstraints of a DBMS—that is, to
intentionally generate and catch foreign key errasspart of the standard operating
process. Instead, foreign key constraints are #jfgianore of a fail-safe—a bedrock
condition where you know that no matter how badlo&tware component errs, certain
properties of the data are inviolate. This is ukdfut is too often used as a crutch where
proper system testing would be an equally effeqtnagection.

There is an implicit relationship betweeslational integrity , transactions and
normalization. Consider a database design for applicants andtigpss that is
denormalized to include both the Position and Agapit attributes in a single entity (as

might commonly be done in a non-relational dataegto

Applicant Denorm

applicant_id integer

source string
applied _date date

name string
Applicant Attributes birth_date date
job _title string

open_date date

close_date date

Position Attributes \ j

Figure 21: Denormalized Applicant Entity

65

Obviously, information about the Positions is répdaon each Applicant record
in this design. Now imagine that an update mustidree to change the title of a position
that some large number of Applicants have apple&dBecause of the denormalized
design, this requires that all the related Appliceows be updated. In a relational
database with full transaction support, this is problem at all, even if the data is
denormalized—a single UPDATE statement is guaranteechange the data regardless
of its normalization properties, so the two designermalized or denormalized) are
indeed logically equivalent. Not so for the noratelnal store, however: the relaxed

transaction guarantees mean that this operatidrikely not complete atomically.

STANDARDIZATION

There is rarely an argument for being standardfeedts own sake; as they say,
“the best thing about standards is that there arenany of them!”. However, it is
important to consider that in a realm like databsteeage, adherence to standards (such
as SQL, ODBC, etc.) can have unforeseen benefiindbe line. Many tools (both
commercial and open-source) have extremely highesgsgof support for SQL, including
automated reporting and visualization, query germrdrom meta-data, web-based data
administration and management, etc. While suchréaygan of course be written as
needed, there is a distinct benefit (at times) éindp able to plug into an existing
ecosystem of tools and processes (not to mentikifi, sets). Stepping outside this
comfortably supported zone has its benefits, kad @f costs.

Code generally lives longer than expected, and datess code doubly so,
because it reflects aspects of the system thateaselikely to change as requirements
shift slightly. Therefore, the future needs of aplecation’s data are not always clear.

For example, in the realm of public companies, tevelopment team may find
66

themselves in an uncomfortable situation with aarditn several years’ time, when asked
how to query the data related to some controlhdf answer is, “just write a distributed

map/reduce function in Erlang!”, the response ftbmauditors may not be pleasaht.

ACCESSCONTROL

Another category of diminished functionality in tberrent crop of non-relational
databases, compared to most commercial relaticatabeses, is in the area of granular
access control. Database systems like Oracle, Boér&QL Server, MySQL, etc., all
contain a robust security model that allow the to@aof user accounts, as well as roles
or groups to combine and manage those user accdumssthen possible to set very
detailed, granular permissions regarding which suserd / or groups can select, insert,
update, and delete data, as well as execute ingiVvitunctions, procedures, etc. In
MySQL, this set of abilities is referred to as \plieges” [MySQL, 2009]. Access control
is real-time, meaning that changes to users' amapgt granular access can be changed at
any point, and that access is immediately enfobgetthe database engine itself.

Non-relational stores do not generally provide asamntrol of this granularit§:

As is the general credo of non-relational systegnanular access control is one more
dimension of overhead that large, scalable, disteidh database systems can do without.

This discussion also shows off a facet of RDBMSeays that many developers
forget about: their capacity to be used by busine®ss, not through pre-written user
interfaced, but directly, using the facilities diet system itself -- writing queries,

importing data into other tools, etc. There areesagspecially in larger organizations,

17 0Of course, on the flip side, a non-relational Bate may keep much more comprehensive version
history, which would obviously be greatly benefldtraan audit scenario.

18 An exception to this is Google’s BigTable, whiabes enforce access control, but only at the column
family level. There are also some research-oriesystems, such as Sun Microsystef@deste, which do
include access controls.

67

where the access control primitives of the databas@agement system (restricting
certain users to only be able to access certainsyigables, queries, etc.) is a key part of
the organization's data dissemination and accesgrotostrategy. Building this

mechanism up from scratch would be a complex atehpially error-prone effort.

68

SECTION 5: SURVEY

This section provides a cursory introduction toesal/existing implementations
of non-relational databases.

As mentioned above, the primary focus of these @spns is expressive power
and complexity, not performance per se; rather #gioring the detailed performance
characteristics of each system, which would be ssiwa undertaking in itself, we take it
as a given that many of these systems are in asg/ toy companies with extreme data
needs, such as Google and Yahoo, precisely becthese offer scaling and / or
performance benefits above and beyond what anfjae# database can do.

There are 3 major classes of non-relational datsbas will survey:

» Distributed Hash Table “key/value” stores, incluglibynamo, Voldemort, and
similar

* Multi-dimensional tabular systems, including GodgBigtable, and open source
clones Hypertable and HBase

* Document-oriented databases, including CouchDBMwoidigoDB

The following sections delve into additional detabn each current system,
highlighting individual areas where it differs frotime pack or offers unusual or elegant
ways to handle certain design issues. The firgetiproducts surveyed below are “cloud”
services, meaning that the entire software andweal stack for these offerings is hosted
with the companies who provide the service, wha ttigarge per usage. The remainder
are more traditional server-based products.

69

GOOGLE APPENGINE DATASTORE

The Google App Engine is a cloud computing platfefmeaning, you can write
and upload modules of code to Google's serversrenthavill run and serve requests,
according to a pre-arranged cost model (free up tertain point). The Data Store is
Google's solution for an integrated database whith ¢dloud computing platform; it is, in
essence, a simplified interface to Google’s intestarage engine, Bigtabie It is
referred to in the documentation as "scalable sirad storage"”, and can be accessed
using a Python or Java API, through which you canstruct queries using an object
syntax of a simplified dialect of SQL known as "GQGoogle, 2009].

The restrictions placed on query plans center erfdht that indexes can be used,
but only one pass can ever be made, and no fulissaee ever allowed. As such, single
ranges can be used if they are ranges on an iadelxequality comparisons can be done
on any attribute; however, inequality comparisoss €, and >) can only involve one
attribute, which must be indexed (because otherwise product might be a non-

contiguous set of entities).

AMAZON SIMPLE DB/ M/DB

SimpleDB is an attribute-oriented key/value databaghich is accessed via the
“cloud”, through the Amazon Web Services platfos.such, it has strict limits in terms
of both size and usage; a query can execute ftonger than 5 seconds. Items (records)

are limited to 256 attributes (columns), each wathmaximum size of 1024 bytes;

19 The reader will already be familiar with the basimcepts of working with the Google App Engineadat
store, from the examples above.

70

domains (entities or tables) cannot exceed 10 (&H, entire databases, 1 TB. [Murty,

2008]. From the product documentation:

A traditional, clustered relational database rezpia sizable upfront capital
outlay, is complex to design, and often requir&Ba# to maintain and
administer. Amazon SimpleDB is dramatically simpteiquiring no schema,
automatically indexing your data and providingrae API for storage and
access. This approach eliminates the administrativden of data modeling,
index maintenance, and performance tuning. Devedogan access to this
functionality within Amazon’s proven computing eromment, are able to scale
instantly, and pay only for what they use. [Amazom, 2009]

An interesting aspect of SimpleDB is that it trasesne of its lineage to the
(mostly academic) concept known asugplespace, which is a coordination mechanism
where collaborators share access to tuples (eegrds) via a set of atomic read/write
primitives, and only those operations may be usedorchestrate shared behavior
[Gelernter, 1985].

SimpleDB uses the “eventual consistency” model @xeld above. Indexes are
created on all attributes, which is good for readgrmance but potentially hazardous to
a heavy-write application (though, since the scplis all done within Amazon’s
infrastructure, presumably as long as the basientat is not problematic, this
performance aspect is not worrisome). All attrilsusee stored as strings; this means that
if you intend to rely on any ordering other thardgraphic—that is, chronological order
for dates, or numerical order for numbers—you nemstode it correctly (for example, by
padding your numeric value with a sufficient numbéezeros such that all numbers are
the same length). The primitive operations are R3dt, Delete, and Query (which
accepts a list of attributes and Boolean operaiora,custom string query format). There
is no support for join operations across domaims(oddly) for sorting results, which

must be done in the client process.

71

Unlike the Google App Engine Data Store, Amazon @&DB can be accessed
via any application, not just one running in thentext of Amazon’s entire cloud
computing platform.

M/DB is an Open Source pluggable clone of SimpleDB wiian be used in
substitution with SimpleDB. It is a free altern&j\and can be hosted on any local server.
This is beneficial in that offers an “escape routa”organizations, should Amazon raise

prices or stop offering the SimpleDB service.

MICROSOFT SQL AZURE / DRYAD LINQ

Microsoft actually has two major entries into tHeud-based data storage space,
but one of themJQL Azure, formerly SQL Services) is intended to be a falational
database engine running in the cloud, whereas ther gVindows Azure Storage
Service formerly Windows Azure Tables) is a simpler, nmetational database offering
of the type we are surveying here. This dualismegigsome insight into their business
strategy in this case:

Microsoft seems to be alone ... in acknowledging Wiste key/value stores are
great for scalability, they come at the great espearf data management, when
compared to RDBMS. Microsoft's approach seems tio s¢rip to the bare bones
to get the scaling and distribution mechanismstyighd then over time build up,
adding features that help bridge the gap betweekek/value store and relational
database platform. [Bain, 2009]

The simpler version, Windows Azure Storage Servaféers simple storage of
blobs and tables (accessed ISAM-style) in the ¢lasdwell as cloud-based queues, all
available via a RESTful interface. Specific to Me&rosoft stack, the main access model

of this model is via LINQ (Language INtegrated QoefJennings, 2009]

72

Closer to the computations model of other non-i@tal engines explored in this
report, Microsoft Research has also published resean a model involving accessing
Dryad, a distributed execution engine, via LINQ,ialime data specification and access
language [Yu, 2008]. This has many potential adsvges, including the benefits of
declarative SQL programming, a coherent and autednetterface into the distribution

mechanisms, and good Microsoft tool integratiorciisas Visual Studio).

BIGTABLE /HYPERTABLE / HBASE

The original published paper @igtable, which is now widely cited in this field
of research, is [Chang, 2006]. It laid out the ing organization, and thought processes
behind, the large-scale distributed storage thabglo implemented to power their
extreme storage needs.

In essence, Bigtable and its clones are implemeagesparse, multidimensional
sorted maps. The three dimensions of any indextmtsomultidimensional array are the
row, column, and timestamp; the value is an opdgoek of bytes. This model was
chosen over a simpler key/value distributed hadbietaapproach because of the

advantages it offers for modeling data:

We believe the key-value pair model provided byritisted B-trees or
distributed hash tables is too limiting. Key-vaagrs are a useful building block,
but they should not be the only building block @mevides to developers. The
model we chose is richer than simple key-valuespaind supports sparse semi-
structured data. Nonetheless, it is still simplewgh that it lends itself to a very
efficient flat-file representation, and it is traasent enough (via locality groups)
to allow our users to tune important behaviorshefgystem. [Chang, 2006]

Rows are the basic unit of atomicity, and updates tsingle row are always

transactional (which make reasoning about the awest properties of the system

73

manageable for developers). Columns are divideal éotumn families, of which there
are a small and static number; column familiestlagebasis for access control, as well as
for internal accounting for disk and memory usaBeyond that, an additional layer
called “Locality Groups” was introduced, above tbelumn family layer, to allow
developers to indicate which column families wakelyy to be accessed together, thus
giving a hint to the underlying system that thesetipns of data should be stored
together. Bloom filters may be used on top of thaprevent unneeded disk accesses in
many cases.

The Bigtable paper makes passing mention of whahdical departure their
singular data model is from traditional relatiodatabase approaches, stopping short of
saying that the design is easy to get used to:

Given the unusual interface to Bigtable, an intémgsquestion is how difficult it
has been for our users to adapt to using it. Nesxsusre sometimes uncertain of
how to best use the Bigtable interface, particyldihey are accustomed to using
relational databases that support general-purpassdctions. Nevertheless, the
fact that many Google products successfully us¢aBlg demonstrates that our
design works well in practice. [Chang, 2006]

Hypertable and HBase are two open-source clones of Bigtable, both based
primarily on the research presented in [Chang, ROf@@ also have developed in their
own directions since then after having been usdarge production environments.

Hypertable is very similar to the design of Bigtable. A sligtifference is that it
is architected to run on HDFS (the Hadoop File &ydtor KFS (compoared to Bigtable,
which runs on Google’s own GFS).

HBaseis another clone, but written in Java instead &# CThis gives it a larger
group of available developers to work on it, ansirapler code base, at the expense of

the extreme performance characteristics of botheigble and Bigtable. They support

74

the same basic data schema, with a couple of stiege additions, like an atomic
increment operation, a full web management and taong solution, integration with

the Hadoop map/reduce framework, rolling upgradeabdities, and a Non-SQL shell.
There are also ongoing development activities tde/grojects like adding secondary

indices, providing object-relational mapping layesshema management tools, etc.

DYNAMO / DYNOMITE

Next to the Bigtable model, Amazonynamo [DeCandia, 2007] is the other
major research paradigm for non-relational dataldasegn. Its model is simpler than that
of Bigtable: simple key/value pairs, stored in stiabuted hash table. There are no joins,
no other relational schema—only this basic storagehanism, with massive scaling
abilities, and extraordinarily high availabilityq@rements.

In exchange for this level of scaling and availi&pilper the CAP theorem

[Gilbert, 2002], Dynamo allows applications to petaeir consistency guarantees:

To achieve this level of availability, Dynamo séices consistency under certain
failure scenarios. It makes extensive use of olyjergioning and application-
assisted conflict resolution in a manner that pesia novel interface for
developers to use. [DeCandia, 2007]

The major techniques used to make Dynamo work anfdin well include:
» Consistent hashing — to achieve incremental scalability in the pamiing scheme
» Vector clocks— to allow MVCC and read repairs rather than weaatention
* Merkle trees—a data structure that can diff large amounts td daickly using a
tree of hierarchically hash values
» Gossip — A decentralized information sharing approach #ilmws clusters to be

self-maintaining

75

Dynomite is an open-source implementation of Dynamo, writte Erlang.
Erlang is itself an interesting language for sucbjgrts, as the entire language is
explicitly geared towards supporting concurrencl.tiread communication in Erlang is
implemented via message paséihdt is a functional language, and thus potentially
prone to be lower performing than something likerChut Dynomite appears to already
have excellent throughput at this stage in its graent.

With both Dynamo and Dynomite, there are a setusfable parameters, or
“knobs”, that allow developers to actively makerade off between availability and
consistency. This set of parameters includes:

* N — the number of replicas per partition. More regdi means more
consistency and durability; fewer means more thinpudy

* R —the read quorum (i.e. how many identical readstrbe done before a
value is returned). More reads means more consigtéwer reads means
lower latency.

* W — the write quorum (i.e. how many writes must aomfcompletion
before the application will accept the value asiigbeen written). More
writers means more consistency, fewer means laatenty.

* Q —partitioning factor (a factor of 2). How many node#l this storage
system be distributed over? Fewer means more thpuigmore means

more availability.

Other implementations in this general family (keye stores) include Project
Voldemort, which is inspired by Dynamo, and Facéd®&assandra, which is inspired

by Bigtable. We will look at both of these projenesxt.

20 The joke about Erlang is that it “achieves highikability through lowered expectations”.
76

PROJECT VOLDEMORT (LINKED IN DATA STORE)

Project Voldemort is an application created by tleelopers at LinkedIn, a
popular business-oriented social networking sitethfey describe it [Kreps, 2009], it was
conceived and started as an add-on to their cutfentfrastructure, a research project
designed to help them scale certain types of daite. Amazon’s Dynamo, it is a key /
value storage system based on consistent distdbhashing, with simple Get / Put /
Delete operations. Like Dynamo, it stores multipdgsions of each data item, and uses
vector clocks for snapshot isolation and for enfaycconsistency. If a node has an
outdated version of a cell, this can be both disoced and repaired by using the
accompanying vector clock information.

An interesting aspect of Project Voldemort is tiiety chose to implement the on-
disk storage mechanism as a pluggable feature ef system—that is, different
underlying approaches to storing and retrieving\kaye pairs can be used. This allows
for a flexible strategy in the face of a) changagplication needs and access patterns,
and b) changes in the cost/performance charadtsrist available secondary storage (for
example, opening the door for transparent use bfl state disk drives when they
become commercially viable). Then, the layout otords on disk becomes an
implementation choice, not an entirely new engimegeffort. This is important, because
as noted, secondary storage layout schemes arée sarfd require a great deal of
engineering and testing before they perform optynal

The consistent hashing algorithms used by Projedtiémort are asymmetrical,
meaning that there can be “better” and “worse” gootethe mix (for example, faster
CPUs, more or less memory, etc.), and the hashikdison can account for these

differences.
77

CASSANDRA (FACEBOOK DATA STORE)

Cassandra is the key/value storage engine useddebBok.comit, an extremely
popular social networking site. A design goal @& fitoject was to enable extremely high
write volumes (500M writes per day, for examplejhout requiring that each write first
do an accompanying read. Instead, the idea waséalye system the ability to establish
serializability after the fact. [Lakshman, 2009]

Similar to Bigtable, Cassandra uses the concepbloimn families to define data.
It also adds the concept of “super columns”, whack essentially repeating columns —
one column can store any number of simultaneousesal

The high-availability approach of Cassandra desesrilitself as *“always
writeable”, meaning that writes never fail. Howegveubsequent reads can choose to
either be “weak” reads (meaning, they may not besistent) or they can be more poorly
performing “quorum” reads (meaning, they go theaxhile to achieve consistency by
requiring a quorum of read partitions to agreet@nvalue before reporting it).

Cassandra has an optimized mechanism for handliiigswand their subsequent
flushing to disk. All writes are first written segptially in a commit log (similar to the
tactic used by relational databases to achievebdityaof writes). Then in-memory
versions of the updated keys are created, which penéodically saved to disk.
Additionally, a bloom filter is used that indicatedether data is (probably) present; this
drastically reduces seek operations. There arep@sodic disk compaction operations

that unify entities spread across nodes.

21 Note that there is also an exposed data storaggoAPacebook applications known as the “Facebook
Data Store”. It is not made public to what degtes tata store uses Cassandra, but it exhibitsasimi
characteristics.

78

As a counterpoint to Voldemort's reliance on a phlge on-disk format layer,
Cassandra takes the opposite approach, choosimgatotain strict control over the
format of the data on disk. The advantage of thithat when data needs to be copied
between nodes (for example, with a new node comm@nd entering a cluster), much
more efficient means can be used; data can befreemtkernel space directly through a
network socket to the network interface of the otina@chine, which can read it directly
into kernel space and write it to disk; no usercepaperations or other caching layers are
ever required, so the operation is extremely effitiln a situation where nodes enter and
leave clusters continually, this level of efficigndoes make sense, though it is important
to understand the significant engineering challghgelevel of optimization presents.

At this time, Cassandra explicitly leaves out supfar many database concepts:

* Atomicity guarantees across multiple keys

* Analysis support via Map/Reduce

* Distributed transactions

* Compression support

* Granular security via ACL’s

CoucHDB /MoNGODB

The remaining two systems we will investigate ipttiediffer from those we have
already seen, in that they alecument-oriented databases.

CouchDB is the most well-known of such databases. It @sfia basic key/value
storage mechanism, the target of which is the geord documents in JSON (JavaScript
Object Notation) format. These keys can be stomed r@ad, as in any other system.
CouchDB then adds an additional layer by using Senpt to create persistent views

against the stored documents which act like nodatdbase tables and can be queried.
79

The storage engine for CouchDB does support ACIDp@rties, and its
concurrency mechanism is MVCC. It supports RES&ftdess. At this time, it is not a
truly distributed system, like many others we haesn but they do list scaling via
clusters as a future goal; the couchdb-lounge pragea thin layer on top of CouchDB
that adds sharding and fault tolerance to Couchb&es, and is used in production at
meebo.com.

Another interesting goal of CouchDB is to scalewn; that is, to have an
implementation that can run in the context of a ireophone, a web browsers, etc. This
goes hand in hand with the desire to enable thee gogramming model interface for
disconnected operation as for regular operationichvhs a particular strength of
document-oriented approaches.

A similar project isMongoDB. It is a document-oriented database that stores
blocks of JSON data, with a stated goal of briddhmg gap between key/value stores and
relational databases. It does not have ACID or &Rinterface, which differs from
CouchDB, but has a much more robust query engirmigports a query language very
similar to SQL, instead of map/reduce in JavaSciipalso supports query profiling,

replication, indexes, and storage of binary data.

80

OTHERS

This section mentions a long list of other impletagons that are out of the

scope of this investigation, but merit mention anthe passing remarks.

Concurrent Key/Value Data Stores

PNUTS - Yahoo's Data Store, which has a hybrid map/red8QL interface
called pig. [Olston, 2008]

Tokyo Cabinet / Tyrant: A transactional key value store, successor to
gdbm/gdbm. http://tokyocabinet.sourceforge.net/

MemcacheDB — A persistent key/value store based on Memcached;
transactions for reliability, high availability vieplication, and an APl w/ many
implementations. Used in production by Digg

Drizzle — A scaled down version of the MySQL codebase

Schemafree— A layer that uses a RDBMS to store unstructurath dand
automatically creates additional tables as indexet® the data blobs
http://code.google.com/p/schemafree/

Archipelago::Treasure - A (possibly remote) database that only retunmies
to its contents, and thus runs all methods onatgents itself. Has support for
optimistically locked distributed serializable teactions.
http://rubyforge.org/projects/archipelago

Chord with DHash - A novel distributed peer to peer hash lookuptesys
layered with a robust persistence model for kewwatata. [Cates, 2003].
http://pdos.csail.mit.edu/chord/

Scalaris - A Dynamo-like scalable, transactional key/valsire written in
Erlang. http://code.google.com/p/scalaris/

81

* Ringo - An experimental Dynamo-like database, for imrhlga data.
http://github.com/tuulos/ringo/tree/master

* Redis- Similar to memcached, but the dataset is noatife] and in addition to
string values, it can store lists and sets withmatopush / pop operations.

http://code.google.com/p/redis/

Embedded Key / Value Stores

* Berkeley DB, NDBM, GDBM, TDB - in process key/value databases libraries
with DB functionality (locking, crud, etc.)

* SQLite — A simpler embedded relational database, wittfoneign key support
(though it does have ACID properties)

* hamsterdb.com— embedded

Object Databases
» Persevere- Object DB that provides persistent data storagdynamic JSON
data. http://www.persvr.org/
* M/DB:X - http://gradvsl.mgateway.com/main/index.html?patdbx -
Lightweight JSON / Native XML Cloud database

« eXist— XML database

Graph-Oriented Databases

* Neo4J
» AllegroGraph

e Sesame

Research Projects

« Bayou - http://citeseerx.ist.psu.edu/viewdoc/summary2#0i1.1.34.5748 -

research project published in 1996 with eventutdlslsse consistency
82

Celeste - http://lwww.opensolaris.org/os/project/celeste/Celeste is a highly-
available, ad hoc, distributed, peer-to-peer dataes The system implements
semantics for data creation, deletion, arbitrargdreand write in a strict-
consistency data model."”

ElasTraS — An attempt to create a data storage systemighas elastic in its

provisioning as other cloud computing resourcess|2009]

Historical Non-relational approaches:

GT.M - a schemaless, hierarchical database with a long dastihguished
pedigree in the banking sector. It is a hierardrasaociative memory (i.e., multi-
dimensional array) that imposes no restrictionghendata types of the indexes
and the content - the application logic can impasg schema, dictionary or data
organization suited to its problem domain." httpwiv.fis-gtm.com

BTrieve — Historical (pre-SQL) database management paradhigt used ISAM
for raw record management and indexing on disk.

LDAP / OpenDS — Not a general purpose database, but a direcesxeswith
database-like properties (can be queried, etc).

ESENT (Extensible Storage Engine NT) - A robust, transactional, semi-
structured data store built in to Windows. It igdisn Windows software products
such as Active Directory and Microsoft Exchangevegr and offers ACID
properties, snapshot isolation, record-level logkindexing, complex types such
as conditional, tuple, and mult-valued, and is -adjlsting.
http://blogs.msdn.com/windowssdk/archive/2008/1(#88nt-extensible-storage-

engine-api-in-the-windows-sdk.aspx

83

SECTION 6: DESIGN STRATEGIES

There are several design points to consider wheigieag physical models for
data to be housed in non-relational databases. Jdaton introduces several overall
design strategies, in three parts. First, we pteaeseries oflesign questionghat any
database designer should ask when beginning acprejeich might guide the choice of
what paradigm of database modeling should be uUSedond, a series of prescriptive
strategiesare given for consideration of data designers wiay see the need to move
between both words. Third, a unifying vision igdlaut for a future where the advantages

of both styles of data modeling can be sharedsimgle model.

DESIGN QUESTIONS

Any data designer who may be straddling the boyntatween relational and

non-relational database designs should considdotosving set of questions.

What degree of normalization is sensible?

There is a wide range of possibilities with any egivdata set, as to how
normalized or denormalized it can be. Taking ouplelyment application example from
above, we could, at one end of the spectrum, cdelipldenormalize the data, putting it
all into one entity where each record is, for exeenpn Applicant. Every "tuple” of this
relation would have massive duplication of attrésjtincluding information about the

Positions, the questions, etc. On the other enth@fspectrum, we could produce the

84

extremely normalized version of figure 11, and rely join operations for even the
simplest query.

The effective give and take of the normalizatiochditomy is that normalization
is worse for performance because it requires joinen disparate information is required
together, whereas denormalization is more compleacdquse it may require more
physical operations be done when changes occurjremd disk-heavy (because similar
information may be stored multiple times).

Generally speaking, non-relational databases falasely on the denormalization
side, because their distributed nature makes abtpinorrelated information across
multiple nodes difficult; when the schema modekmsre lax, there is little reason for
developers to produce ultra-normalized designkerfitst place.

Another way to ask this question is, “Should a treteship be embedded or
referential?” Referential implies that the two gaf are stored and accessed separately,
whereas embedded implies (potential) denormalizgfidurphy, 2009]. While the exact
physical divisions for optimal performance are ofitse system-specific, there are some
general terms that can distinguish between the tases. If an object would be
considered “first class” (that is, one of the intpot entities in the system), it should be

its own entity, and sub-entities should be denomedlinto it.

Which entities participate in transactions togethe®?

Are there distinct subsets of entities in the maabkere transactions involving
multiple members of the subset are common, bus#@tions crossing subset boundaries
are uncommon or nonexistent? This could point fadicular data layout, such as the
Entity Groups concept in the Google App Engine C&tiare. In our simple Employment

Application example, there's a clear division betw@ositions and Applicants, in that it
85

is uncommon that one would be seeking to updath tw definition of the Position

itself in conjunction with one or more Applicantogds. An alternative design where, for
example, the Position record holds a pointer tosgecific Applicant who was hired for

the job, and the Applicant simultaneously changesatus column from "Applied" to

"Hired" might complicate this situation, pointing either the fact that the two entities
should be within the same transaction group (patiyiess performant or scalable) or
that our data design is overcomplicated.

Alternate designs for transactions are also passbnsider patterns such as the
“Escrow Broker” pattern [Helland, 2007], where nipie parties all trust in one central
actor to asynchronously commit (or roll back) ansaction. If the application design
requires complex transactions spanning multipletiesf which may be physically
distributed, the addition of such an abstractiom daastically simplify the process, rather

than expecting the database infrastructure to sitmghdle it transparently.

Where are areas of high contention?

If the data store engine uses Optimistic Concugremas all most of the non-
relational implementations we have considered lder tareas where many simultaneous
users might be updating the same entity should \meded, or at least carefully
considered, as they might precipitate locking peotd and cause arbitrarily long wait
times in user processes. As an example, consideurter on a web page. If this counter
was implemented as a single instance of an ertay multiple processes attempt to
update every time the page is loaded, then highsa@tional throughput will cause
potentially long waits for the page to be renderegeh process will attempt to read the
current value of the counter and write a new vatug transaction, but that write will fail

if any other transaction is already in progressisogy it to abort and retry. A more sane
86

setup here might be to have each page accessanmig record, for example into a log
table, and then have an offline process crawl duwonds of that table aggregating hit

counts (which is the general paradigm of the mae architecture).

What are the history requirements of the application?

Are there cases where it would be useful or necgdsaview query results as
they would have appeared at some point in histbor?example, does an editable entity
need to support a "revision history" property, ardd operations? If so, engines that
store all updated versions of a value (such asaBlgtor Cassandra) may be the best

choice, as this historical property can be exptbitéth no additional development.

Is Eventual Consistency an option?

There are certainly applications where eventuakisb@ncy is not adequate for
the requirements of the system; for example, iarking application, if there is a period
of time where a billion dollar transaction appetrshave only partially completed, it
might be problematic. Less onerously, applicatithrad depend on back and forth patterns
of human interaction (say, instant messaging) daoire that the system portray, at least
locally, a consistent picture of the interactiom, edse the participants may become
confused.

Determining the exact tolerance for inconsistentydiéferent portions of an
application is a useful exercise, and decisionsiatieese patterns should be documented
along with the logical data models. Even for amgilmns without plans for distributed
operation, this kind of knowledge about the systean be used in system tuning; for

example, if there is data that can tolerate songgegeof inconsistency, that knowledge

87

can be used to decrease observed latency by pushiaghe of data to the client, which
will potentially be temporarily inconsistent witing overall central data state of the
system, but will seem “snappier” to users.

Practically, if eventual consistency is an optiar the logical design of the
system, then a physical strategy update queuing may also be an option, where all
writes to the database take place via non-blockjngue operations. This introduces
additional latency, points of failure, and gena@inplexity to the solution, but might be
a suitable architecture in certain situations. mgkihe concept even further, one might
consider the entire system to be under an evemerchitecture, where all interactions
between users and the persistent state of thens\aie enacted via asynchronous, non-
blocking events or messages.

Alternately, if exact consistency is required, themay still be benefits of using
eventual or weak consistency as a part of the indeaxnd lookup strategy. As described
in [Taylor, 2009], it is possible to write the maéntry of a piece of data atomically with
full consistency, but then write index records with any atomicity guarantee. At that
point, the application can be “mistrustful” of indentries, and always apply the same
filters to both the index lookup and the data estal. This is a similar idea to Bloom
filters, where the presence of a value is indicgbed not guaranteed) by a bit in a filter;
the practices allows optimization of performancéhwespect to disk 1/O, but no loss of

correctness.

Does a Hash Table already model your problem?

There are certain problems that naturally pointHash Table solutions—for

example, dictionary models where a known key isitdex to any given data set. If your

88

data falls into this pattern, a non-relational date structure based on hash tables

(including any of the key/value stores we've seleova) is probably a good fit.

Is the Entity/Attribute/Value pattern inherent in t he data?

If, as in our original example of Questions and wWess, your data naturally falls
into a “Entity / Attribute / Value” pattern, themy number of non-relational databases
may be a vastly better fit than a relational dasebd&ecause of a basic mismatch in the
structure of the data and the structures thatioelalt databases and SQL queries provide.
There are numerous examples of this in Biologyifigial Intelligence, and the Semantic

Web’s "Subject-Predicate-Object" triples in RDF.

Are there hierarchical or recursive relationships n the data?

While relational databases have adapted over thesy® comfortably handle
advanced tree or graph-like structures (e.g. thetddeSet model), if your data primarily
exhibits such relationships, it is well worth examg the non-relational approaches

presented here (especially the graph-oriented dateh.

Are there natural functional boundaries to partition along?

Aside from horizontal scaling through homogenowsriiuted storage, as most of
the non-relational database solutions do, theamdgher direction of parallelism that can
be exploited: partitions between functional silé¥itchett, 2008]. For example, data
about products can be stored in one storage enginereas data about users can be

stored in another.

89

Note that a partition between functional areasimplemented as a physical
database division (e.g. on multiple servers), udyta boundary when it comes to data
design. Using the running example above, if you thetdatabase serving Positions on
one server, and the database serving Applicantarmther server, the only way to
produce a composite join of positions and applEasty retrieving both separately and
joining them manually, in memory. It is rare thatyaapplication will truly exhibit this
level of separation naturally; even if there areaarwhose functionality is completely
disjoint, there will typically be some shared seed, such as user identity management
and access control, system constants, etc. Semvieeted architectures generally help
push designs in this direction, albeit with theAmoperformance caveats.

Another dimension to consider for partitioning,hetthan functional areas, is for
systems with disproportionate silos of data. Fanemle, a photo sharing web site will
have meta-data to run the system (users, groups, e¢&c.), and then will typically have
two to three orders of magnitude more raw dat&énactual photo assets it tracks. In this
case, there is a clear partition between the twd,the scaling needs for both are quite
different. In this case, running the meta-data otraditional relational database, but
running the large binary data on a distributed redational data store, might be a good

option.

Are there compounding factors that might influenceyour design?

Though we give it only passing mention, it shouldoabe obvious that pure
logical design factors are not the only consideretiwhen approaching the choice of
database paradigm. [Brown, 2009] introduces afsgidelines, including:

* Does the organization have licenses or funds fmmmamercial RDBMS?

* Does the current hardware setup of the organizatigport running an RDBMS?
9C

» Does the application need to interact with or ntg@her data, such as in legacy
systems, where the relational paradigm is alreadyse?

* Does the organization have proper backup / restoaechival processes for
relational databases?

* What is the skill set of the development team? édtise known as, “Who wants
to learn Erlang this weekend?”)

* What are your reporting requirements, in terms athbad-hoc data queries and
scheduled reports? Can you best satisfy them wa®h interface?

* Do other systems need access to your data, andif & via a SQL interface?

DESIGN STRATEGIES

This section offers a set of prescriptive tips andsiderations to accompany the

design process, in light of the relative meritsedétional and non-relational databases.

Logical Model First

It is never a bad idea to spend the time duringuretream portion of a project to
get a better understanding of the underlying pwpolsthe software. One of the best
ways to do this is via a formal logical data degigncess. Whether it is done in UML, or
sketched on a white board, an expert data modekatibnal or otherwise) will uncover
an immense amount of knowledge about any non-trapalication by undergoing this
type of effort.

Many of the problems data engineers face stem fitwenfact that we end up
designing subconsciously to a particular physicateh, rather than being able to work

with the higher relational model. A standard prnoleiwe emerge with, then, is that it is

91

always advisable to déogical data design first, regardless of the ultimate mays
destination of the database

Ideally, there would be tools available to aidhistdesign and transition process.
Unfortunately, such tools do not yet exist (or #adlsat do are hopelessly outdated and
certainly not prepared for the advent of non-reladi models). But in general, even pen

and paper sketches are far superior to doing rphimll.

Consider Several Physical Approaches

Settling on a particular database technology shoatdnecessarily be the end of
the logical data design process. Many instancemof relational database design could
be fixed by considering a non-relational patternd avice versa. If you are set on
modeling using a key/value store, consider wriingketch of the problem in SQL first,
possibly with an eye to avoiding certain SQL arditerns like the Entity / Attribute /
Value problem explored above.

A master data designer should have familiarity wiitlese different types of
storage systems, for several reasons: to recoghaea problem she is designing for
might actually be much more clearly expressed iotlaer paradigm; to make correct
design choices for systems that might start in men@digm (probably a relational SQL
database) and later migrate to another paradigrecakbility demands increase and
functional fluidity decreases; and, on a meta leieldesign future data storage engines
that enable the "best of both worlds", changingesponse to the many facets of the

design process for an application.

92

Keep It Simple

Thought it may be a truism, it bears repeating: @emity itself is often the
biggest enemy of any software design project. &t thspect, a major goal of the logical
design process should be to keep all things aslsiagpossible. Sometimes, that means
that a simple relational database design—with s&blavs, columns, foreign keys, etc.—
is the best and most familiar design. Other tinm@syever, it may become apparent that
forcing standard degrees of normalization on the @acostly and complex compared to
simply storing it in a semi-structured blob witlsiagle key. There is no magic threshold
for this kind of decision, and it certainly has sdhing to do with the skill level of the
development team in various areas. But it is a vesgthwhile activity to keep an eagle

eye on complexity in any project, and always stforesomething simpler.

Play It Safe

If the logical design decision of using non-relagbdatabases seems plausible for
an application, but the choice of specific techggles daunting or unclear, one option is
to build a simple non-relational layer on top ofedational database. This can be as
lightweight as creating a simple key/value wraplafer over a table in an existing
relational database, such as MySQL, and then imgiimg the application in terms of
that simple dictionary-like API. There are examptdésthis approach, such as the one
used the company FriendFeed [Taylor, 2009]. Thaemcern was that in supporting high
data volumes in standard MySQL tables, they en@&wadt numerous operational
problems around building and removing indices, Ak.an alternative, they revised the
data model of FriendFeed to use a simple key/vapdementation, with opaque values
(which are actually compressed, serialized Pythactiotharies created using zlib

compression and Pythonfsckle serialization). The application layer then workeith
93

the columns and values within these blobs, andtedemdices that were themselves
database tables in MySQL, which could be createlddramoved efficiently as needed by

the authors of the application.

Show Your True Consistency

If there will be areas in your application wherensigtency guarantees are
relaxed, consider what patterns of user interactiesign might best support this. For
example, if transactions (such as credit card @se$) are not instantly reflected in
transaction summary views, a simple strategy ssdalzeling the view with “Current as
of ...” and a date can alleviate questions and werrigsers can be quite tolerant of
temporary inconsistency if they are given enoudbrimation to understand its scope and
resolution schedule.

The main pattern to avoid, in this area, is anyeacakere the user might question
if some action they took completed successfully. &@mple, if the option of uploading
a photo might appear temporarily inconsistent i dlerall photo view, the user might
be tempted to upload it again, thus creating aidafg. Feedback in such cases—such as
a message stating, “Your photo has been uploadeasg wait up to 5 minutes for it to

appear in this view’—is critical.

Stick To The Map (Reduce)

Map/Reduce is emerging as one of the most powedols in an analytical
toolkit, and might have the power to conceptuallpant other paradigms for it (OLAP,
Data Warehouses, Cubes, Star Schemas, etc.) Coasitlee start what your analytics

framework should be, and make allowances for it. &@ample,Hive is a system that

94

does this type of work over a Hadoop map/reduceatipe and exposes some querying
primitives in a language called "QL", which is SQke, but also allows plugging in

custom map reducers.

Evolve Gracefully

No schema stays the same forever. Regardless ahtite of a system’s data
interaction, it is important to create a plan fomhfuture changes to the schema will be
handled, ideally without a) requiring any downtinoe,b) leaving a legacy code mess.
Consider in your initial designs how this might ocgand it may lead to some allowances
in the original design, or in the choice of platfprthat improve this picture down the
line.

One potential development to support this woulddsenon-relational databases
to explicitly track information about the “schemarsion” of stored data (as distinct from
the data version), though the exact mechanism tihiddn some cases is far from clear.

[Strauss, 2009]

THE ONE TRUE DATABASE ?

While the birth of cutting-edge non-relational dmses is an exciting
development in software, it is an unfortunate stdtaffairs that we, as engineers, must
choose to move down one path or the other withconceptual designs. Consider instead
that eventually, relational and non-relational nisdaight merge, or at least find some
common ground. RDBMS vendors might begin offeringhew type of service, in
addition to (and well integrated with) their exigtirelational infrastructure, that emulates

the behavior of these key/value stores, with mihiomaerhead. Non-relational entities

95

could be another option, in addition to tables,t theovide superior scalability and
performance, offering a menu of additional servigemnsactions, locking access control,
etc) that can be enabled or disabled as desired ganmitted) by the performance
requirements of the system. In many ways, this @pgr echoes the Microsoft
philosophy (and indeed, looks similar to the WindoMzure offerings explored above).

On the other hand, there is much to be said forlhix philosophy of having
many small tools, each of which does a single jebywvell, and all of which interact
through standard mechanisms. Rather than have oifed, all-things-to-all-people
database management system, it could be that walr@ady on the right road, with a
plethora of different tools, each geared to solviéerdnt problems well. Having a
healthy, competitive marketplace for such systensuees that the systems that end up
with high adoption will be those most battle testéed orthogonal with the actual needs
of tomorrow’s software systems.

Regardless of which of these directions one isopgment of, there are a few key
concepts that overlap both areas. This sectionoexpl several dimensions of that

evolving relationship.

Modeling Constructs

While we may not end up with (or even desire) aglginunifying database
architecture, we can hope that another segmerteofiésign space might become more
unified: that of conceptual modeling. Use of UMLshlaecome widespread for object-
oriented programming, but it is still a poor fitrfdata modeling. This is partly because,
compared to object oriented designs, traditionddticnal designs are comparatively
impoverished: there is no inheritance, no diffeile@atl aggregation versus composition,

no list types, etc. Mapping from a full UML desigpace down to a relational space is
96

error prone and non-trivikd More work should be done in this area, as there i
potentially much to be gained from a consistent #&mashsparent logical-to-physical
mapping via tools.

Too, there are a range of logical characteristieg turrently have no place in
UML, but would be useful in designing the data medg tomorrow. For example, what
is an entity’s tolerance for inconsistency? Alonigaivlines could it be partitioned? Are
its relationships candidates for embedding or ezfeing? Should historical versions of
data be kept?

Ultimately, a sound goal would be to achieve mathgral models for all types of
relevant data model patterns that are as elegahtcamplete as the relational model

itself.

Schema Translation

Just as it would be ideal to have a modern, unifieth modeling tool that could
then transition into any number of Physical schestaps, it would be helpful to have
adapter layers that could transform physical sclsefram one database to another. A
common use case for this might be to take an agtic that was built on a relational
database platform and transition it to a non-reteti store without any rewriting. Can we
find a mechanical way to transform complex reladiatatabases into key/value stores?

Theoretically, our tool kit could provide a "wizdrdhterface to translate from
relational database schemas to non-relational safiefs an input, a SQL schema is
given, along with an indication of the target pbamh. The metadata from the SQL
schema is then used to guide the user throughiesseir questions that disambiguate

unknown cases and discern the user's design ifiteatoutput depends on the platform.

22 Use of Rational Rose to do this, in particulag jsainful and horrible experience. [Varley, 2009]
97

For example, with a SQL to Google App Engine tratmsl the output might be a

Python code file that defines the schema of theretational database, and additional

code to enforce certain operations that were plath® relational database. Mappings

might include:

Each table becomes an entity; each column (exdeptity) become properties
Identity columns are removed in favor of the keyuom, unless that identity
column is intended to have business meaning

0 non-NULL columns are required ("required=True")

o Columns with bound defaults get automatic values

o Each SQL type would need to be mapped to a destmathema type

varchar(1-500)->StringProperty; varchar(>500)->Rerperty; etc.

Each foreign key becomes a reference
Foreign key tables that do not contain other priggrcan be turned into

"choices:" sets

Additionally, the interface would be several desigpects that would not be clear

from the relational data design, but would havbd@answered explicitly. For example

For each single column primary key identity colunaigk if it has "business
import" or if it behind the scenes enough thatit e completely replaced.
Integration with Google Accounts can replace angrname / userid columns
(created by, updated by, owner, etc.)

Entity / Attribute / Value patterns could be idéet and transformed into
Expando properties

In foreign key relationships, the user could ddsxiboth directions so that the

proper names can be given to the references ahdréfrences. For example, an

98

applicant has its Position reference, which is obsj but a position will also have

its Applicants reference, which returns a set bffed Applicants that refer to it.

Finally, there are some things that would requitgenresearch before they could
properly be modeled:

* Are there any relational patterns that could beveded into multi-value
properties? Perhaps look for one-to-many relatigsskvith small numbers of
values and no additional properties.

» Additional SQL capabilities, like GROUP BY, coulé bransformed to equivalent
standard functions in a map-reduce paradigm, psriagih intermediate storage
or as materialized views.

* It would be a generally useful effort to craft tdatps for all of the known SQL

functions in all of the non-relational paradigmirexample, a standard

Referential Overlays

Another useful tool in the new data modeling tobikithe idea of a “referential
overlay”. The idea is that a conceptual layer coloéddeveloped between the logical
schema and the current-version on-disk data, wéshthe ability to map ongoing access
to the data through a virtual mutator [Strauss,920This could be a key part of any
migration strategy between successive versionshefdodebase, and might even be

automatically produced.

99

Pluggable Architectures

Finally, one suggestion from [Moon, 2008] is thia¢ distribution of a database
might legitimately be dealt with separately frora thodel implementation, by using a
sufficiently tiered architecture, where clients pata requests to a library which does
the intermediate work of partition lookup, datarietal, read repair, relational re-
mapping, etc. Under the covers, that library copddentially be dealing with a wide
variety of different physical storage architectyrgscluding both relational and non-
relational database management systems. The s$rickmaking sure that the interface is
sufficiently robust that the intent of the developan be realized, while not being so
complicated that it can hide subtle bugs or pertorce problems. There does not appear
to be any consensus on a front-runner on this agprat present, but it is commendable

that the development of non-relational distributieathbases has spurred interest.

10C

SECTION 7: ANALYSIS & CONCLUSIONS

"Think of the Relational Model as being analogausatithmetic, and the
implementation as a calculator. The calculator @¢dnd an old, room-sized, gear
and lever machine that takes minutes to produdegéesanswer. Does the
clunkiness of such a calculator mean that arithemstidoomed"? [Bain, 2009]

This report has investigated the differences betvieslitional relational database
modeling and several new forms of non-relationaligte that have arisen in response to
the scaling challenges presented by modern wele-soétiware problems.

Can we now declare a winner in this battle? Famfio We can, however, make
some key observations about the differences.

At the core is the realization that relational thatse design is only one tool
among many. Its supremacy in market share is wellagned by its sound mathematical
underpinnings, its general purpose data design dwark, and the impressive
engineering that has allowed it to perform at veigh levels in most situations. But
ultimately, it is not the hammer for all nails; ggengths and weakness are all the more
visible in the light cast by a new breed of datanagement platforms. Generally,
scalability is cited as the main reason to eschedational databases for key/value stores;
however, as we have shown in this report, thereaakgide range of differences in
expressive power: some in favor of relational dassis and some in favor of key/value
stores. There are also design decisions from aralbaachitecture point of view that
favor one direction or the other.

Ultimately, as engineers, our goal should not bméoely settle for one paradigm
or the other, but to envision a time when we ca&ater databases that merge the strengths

of both paradigms, with powerful abstractions takkdw us to design our data in clear,
101

natural, concise ways, and then implement thoségesn the most efficient way
possible given the architectural constraints oftésd.

Non-relational databases don't allow us to expthsstypes of designs we're
"used to" in relational database modeling, but tba&y often give us equally good—and
sometimes better—alternatives. In the best casy, éimcourage much simpler designs
than relational databases do; in the worst casg, dffer us no particular advantages, but
offer avenues of scaling that cannot be achievééraise, and encourage alternative
functional decompositions in our designs than weld/dave otherwise come up with.

Non-relational databases are a new breed of systemis from the ground up
with an entirely different goal from SQL and retatal databases: rather than pouring
development effort into building abstraction layers top of the raw storage to allow
hapless developers to get near-optimal resultsradégss of how clumsy their schemas
and queries are, this new set of tools required ind foremost that scalability and
efficiency are king, and that any operations baiit top of those primitives must be
created with care and significant engineering itmesit.

Along those lines, one general way to state thamidges of using non-relational
databases is that they put the developer closénetanachine—more in charge of the
specific operations that are done to structuresipgrand fetch data. As has been shown
over the history of computing, the point of optintdbseness to the machine is under
continual metamorphosis. Very few programmers todaiye directly in an assembly
language, in part because computers have gottear,fasit also in part because we have,
over time, learned to create and use abstractimaiscteanly and efficiently implement
our intended functionality in terms of the machiRew programmers could even write

assembly code that is as optimized and efficientnaslern compilers do when given

10z

some high level language code to compile; the absbns are themselves the product of
many years of world-class research and engineering.

So it is with SQL databases. Even a giant tome [ixarcia-Mollina, 2008] can
only touch on many areas of engineering and reketirat make today's commercial
databases as fast and efficient as they are. Ire s@mse, the development of relational
databases itself is ahead of its time; the fact tharistine mathematical model of
relations is today the primary way in which prograens design and interact with data is
something of a miracle of engineering. The very teyheir ability to do this, however,
is that the model—relational data design and SQLa-isme tested, mathematically
grounded abstraction layer. It is not perfect,frither is it outdated or useless.

This author would advocate, therefore, that theettgpments exemplified by non-
relational databases should not remain an outdidéenger to the legacy of relational
databases, but should instead be researched, towtgrand eventually, incorporated into
a unified model. There's nothing to say that immatation as a key/value store shouldn't
be part of the suite of implementation choices dadatabase whose data is structured
relationally; likewise, there is room in the wod€lrelational databases for the conceptual
data design advantages offered by non-relation@bdaes; the option to use optimistic
concurrency control, to keep multiple versions ok per the columnar database model,
to accept and support semi-structured (or run-simectured) data efficiently, to maintain
multiple simultaneous values for a cell, and toes@&ross a cluster using some sort of
ancestry or grouping relationship—these would allcbnceptually coherent additions to
the relational database world, provided the mathiealamodel for their incorporation is

sound, and the configuration of the options isgpament and cohesive.

10c

Bibliography

Abadi, D. "Data Management in the Cloud: Limitasoand Opportunities". IEEE
Computer Society, Bulletin of the Technical Comeetton Data Engineering,
January 0000 Vol. 0 No. 0.

Aiyer, A; Anderson, E; Li, X; Shah, M; Wylie, J. &Bsistability: Describing usually
consistent systems." Proceedings of HotDep 200& 4th workshop on Hot
Topics in Dependability (7 Dec 2008), San DiegadljfGania, USA.

Amazon.com. “Amazon SimpleDB Product Home Page”cessed in July, 2009.
http://aws.amazon.com/simpledb/

Baeza-Yates, R; Ramakrishnan, R. "Data Challengé&hoo!" In Proceedings of the
11th international Conference on Extending Databiasehnology: Advances in
Database Technology (Nantes, France, March 252@%). EDBT '08, vol. 261.
ACM, New York, NY, 652-655.

Bain, Tony. "Is the Relational Database Doomed®ad®Write Enterprise. Feb 12 2009.
http://www.readwriteweb.com/enterprise/2009/02lis-telational-database-
doomed.php?p=3

Barreto, C. “NoSQL: leading Cloud's ‘NoBah’ moverti&n Digital Walkabout, July
2009. http://charltonb.typepad.com/weblog/2009/63¢t-leading-clouds-nobah-
movement.html

Bernstein, P. A. and Goodman, N. 1981. Concurrégdagtrol in Distributed Database
Systems. ACM Comput. Surv. 13, 2 (Jun. 1981), 185-221. DOI=
http://doi.acm.org/10.1145/356842.356846

Brantner, M; Florescu, D; Graf, D; Kossmann, D; $@, T. "Building a database on
S3". Proceedings of the 2008 ACM SIGMOD internagiortronference on
Management of data, pages 251-264. 2008.

Brown, S. “To SQL or not to SQL?”. CodingTheArchitere.com, July 2009.
http://www.codingthearchitecture.com/2009/07/21¢gl_or_not_to_sql.html

Cates, Josh. Robust and Efficient Data Managementaf Distributed Hash Table.
Master's thesis, Massachusetts Institute of TecgypMay 2003.

Chang, F; Dean, J; Ghemawat, S; Hsieh, W; WallBglBurrows, M; Chandra, T; Fikes,

A. "Bigtable: A Distributed Storage System for Stwred Data”, Seventh
Symposium on Operating System Design and Implertientg2006)

104

Codd, E. “Derivability, Redundancy and Consisten€yrelations Stored in Large Data
Banks”. IBM, San Jose, California, IBM Research &®&eRJ599, June 19609.

Cooper, B; Ramakrishnan, Raghu; Srivastava, Utkasdberstein, Adam; Bohannon,
Philip; Jacobsen, Hans-Arno; Puz, Nick; Weaver, iBlanYerneni, Ramana.
"PNUTS: Yahoo!'s hosted data serving platform”. deexlings of the VLDB
Endowment, SESSION: Industrial, application, andezience sessions: massive
data, pp 1277-1288 (2008)

Das, S; Agrawal, D; Abbadi, A. "ElasTraS: An Elasliransactional Data Store in the
Cloud". USENIX 2009 HotCloud Conference Proceedii(g809)

Das, S; Antony, S; Agrawal, D; Abbadi, A. "Cloud&ata: Comprehending Scalable
Data Management Systems". UCSB Computer Scienckniad Report 2008-
18, November 2008.

DeCandia, G; Hastorun, D; Jampani, M; Kakulapatj, Lakshman, A; Pilchin, A,
Sivasubramanian, A; Vosshall, P; Vogels, W. "Dynamfanazon's Highly
Available Key-Value Store", in the Proceedingstod 21st ACM Symposium on
Operating Systems Principles, Stevenson, WA, Oct20@7.

Dinu, Valentin; Nadkarni, Prakash. "Guidelines the effective use of entity-attribute-
value modeling for biomedical databases". Int Jauah Medical Informatics 76
(11-12): 769-779. (December 2007)
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?dbfmied&cmd=Retrieve&dopt
=AbstractPlus&list_uids=17098467&query_hl=2&itooldpmed_docsum.

Garcia-Mollina, H; Ullman, J; Widom, J. Databases®yns: The Complete Book"2
Edition. Prentice-Hall, June 2008.

Geambasu, R; Gribble, S; Levy, H. "CloudViews: Commal Data Sharing in Public
Clouds". USENIX 2009 HotCloud Conference Proceesling(2009)
http://www.usenix.org/event/hotcloud09/tech/full peas/geambasu.pdf

Gelernter, D. “Generative communication in LindACM Transactions on Programming
Languages and Systems, volume 7, number 1, Jah@8by

Gilbert, S; Lynch, N."Brewer's Conjecture and the Feasibility of Consist&vailable
Partition-Tolerant Web Services". ACM SIGACT Ne@f02.

Google. “GQL Reference”, Google App Engine Documat@ohs, 20009.
http://code.google.com/appengine/docs/python/datagiqlreference.htmi

Hay, David. Data Model Patterns. Dorset House Bhlilg Company, Incorporated
(1995)

10t

Helland, P. “Life beyond Distributed Transactioas: Apostate’s Opinion”. 3rd Biennial
Conference on Innovative DataSystems Research (G IIR7.

January 7-10, Asilomar, California USA.

Hsieh, W; Madhavan, Jayant; Pike , Rob. “Data manamt projects at Google”.
SIGMOD Conference, 2006, pp. 725-726.

Hui, M; Jiang, W; Li, G; Zhou, Y. "Supporting Datde Applications as a Service".
ICDE, 2009. http://www.comp.nus.edu.sg/~huimei/pafreulti.pdf

Jennings, R. "Retire Your Data Center”. Visual $tudagazine, February 2008.

Kamfonas, M. "Recursive Hierarchies: The Relatiohaboo!". The Relational Journal.
October/November, 1992. http://www.kamfonas.comhdal

Kreps, J. Project Voldemort presentation at Jur@200SQL Meetup, San Francisco.
http://static.last.fm/johan/nosql-20090611/voldetnoosql.pdf

Lakshman, A. Cassandra Project Presentation at 2008 NoSQL Meetup, San
Francisco. http://static.last.fm/johan/nosql-200BD6assandra_nosql.pdf

Lamport, L. Time, Clocks, and the Ordering of Ewenh a Distributed System.
Communications of the ACM. Volume 21, Number 7yJ1978.

Moon, C. Dynomite Project Presentation at June 2008QL Meetup, San Francisco.
http://static.last.fm/johan/nosql-20090611/dynomitesql.pdf

Murphy, R; Merriman, D. “MongoDB Schema Design”. MmDB.org, June 2009.
http://www.mongodb.org/display/DOCS/Schema+Design

Murty, James. Programming Amazon Web Services,t Fedition. O'Reilly, 2008.
http://portal.acm.org.ezproxy.lib.utexas.edu/cttatcfm?id=1407893

MySQL. “MySQL 5.0 Reference Manual”. 20009.
http://dev.mysqgl.com/doc/refman/5.0/en/index.html

Olston, C; Reedy, B; Srivastavaz, U; Kumarx, R; kom, A. “Pig Latin: A Not-So-
Foreign Language for Data Processing”. SIGMOD’08ne] 9-12, 2008,
Vancouver, BC, Canada.
http://www.cs.cmu.edu/~olston/publications/sigmog@ai8.

Pritchett, D. “BASE: An Acid Alternative”. ACM Quey vol. 6, no. 3, July 2008.
http://queue.acm.org/detail.cfm?id=1394128

10¢

Stonebraker, M. “The Case for Shared Nothing Aettiire”. Database Engineering,
Volume 9, Number 1 (1986). http://db.cs.berkeley/pdpers/hpts85-nothing.pdf

Stonebraker, M, et al.. "C-Store: A Column-orientBdBMS," Proc 2005 VLDB
Conference, Trondheim, Norway, Sept. 2005.

Stonebraker, M. "The End of a DBMS Era (Might beodpUs)". Blogs at the
Communications of the ACM, http://cacm.acm.org/Blbdpg-cacm/32212-the-
end-of-a-dbms-era-might-be-upon-us/fulltext

Stonebraker, M. and Cetintemel, U. 2005. "One i All": An Idea Whose Time Has
Come and Gone. IRroceedings of the 21st international Conference on Data
Engineering (April 05 - 08, 2005). ICDE. IEEE Computer SocieWashington,
DC, 2-11. DOI= http://dx.doi.org.ezproxy.lib.utexedu/10.1109/ICDE.2005.1

Strauss, D. “Giving schema back its good name”.rkibchens Blog, July 2009.
http://fourkitchens.com/blog/2009/07/05/how-schegoé-bad-name

Taylor, B. “How FriendFeed uses MySQL to store scadess data.” February, 2009.
http://bret.appspot.com/entry/how-friendfeed-usgsanh

Vogels, Werner. "Eventually Consistent”. Communaa of the ACM, Volume 52,
Issue 1 (January 2009).

Yu, Y; Isard, M; Fetterly, D; Budiu, M; Erlingssorl); Gunda, P. K.; Currey, J.
“DryadLINQ: A System for General-Purpose DistritditeData-Parallel
Computing Using a High-Level Language”. Symposium @perating System
Design and Implementation (OSDI), San Diego, CAzémeber 8-10, 2008.

Wei, Z; Dejun, J; Pierre, G; Chi, C; van Steen, Nbervice-Oriented Data
Denormalization for Scalable Web Applications”. ACBI78-1-60558-085-
2/08/04. WWW 2008 / Refereed Track: Performance Sealability April 21-25,
2008. Beijing, China (2008)[Campbell, W. G. 199@rA and Style in Thesis
Writing, a Manual of Style. Chicago: The UniversitfyChicago Press.

Vita

lan Varley was born in Albany, NY in 1975, to Caseliand Thomas Varley. He
attended Skidmore College in Saratoga Springs, Where he graduated summa cum
laude in 1997 with a Bachelor of Arts in both Muard Philosophy. Since 1998, he has
worked as a Software Engineer and Database ArtHgecompanies in San Francisco,
Houston, and Austin. He has also taught-68" grade Computer Science. He is an avid
musician, and tours the world regularly playinghmtarious bands (most recently, and

stressfully, during the completion of this report).

Permanent address: 4221 Mattie St., Austin, TX2387

This report was typed by the author.

10¢

